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Abstract. For immersive experiences such as virtual reality, explorable worlds are
often fundamental. Generative artificial intelligence looks promising to accelerate
the creation of such environments. However, it remains unclear how existing inter-
action modalities can support user-centered world generation and how users remain
in control of the process. Thus, in this paper, we present a virtual reality application
to generate virtual environments and compare three common interaction modali-
ties (voice, controller, and hands) in a pre-study (N = 18), revealing a combina-
tion of initial voice input and continued controller manipulation as best suitable.
We then investigate three levels of process control (all-at-once, creation-before-
manipulation, and step-by-step) in a user study (N = 27). Our results show that
although all-at-once reduced the number of object manipulations, participants felt
more in control when using the step-by-step approach.
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1. Introduction

The Holodeck from Star Trek© enables users to generate realistic environments by ex-
pressing their desires with simple voice commands next to manual controls. As artificial
intelligence (AI) progresses, generating individualized virtual worlds becomes more fea-
sible, as virtual reality (VR) allows users to create and experience such worlds. However,
individualized environments are too complex to describe with short voice commands.
The question remains of how to give humans control over the generation.

To empower users to generate virtual worlds, we must understand the extent to which
they need control during the generation process. User-controlled generation includes
many aspects, from object creation to adjusting sizes, textures, and positions to broader
environmental elements. To reduce complexity, we break the generation down into in-
dividual objects (i.e., the building blocks of the environment). Nevertheless, users still
have to manage object creation, type, placement, aesthetics, animation, and interactivity.
Although in-depth customization offers great autonomy, it may also be inefficient. Thus,
the question remains of how different control flows affect efficiency and user experience.

Although existing literature explored user-driven virtual environment design, it re-
mains unclear which control flow enhances user’s control. Prior works investigated gen-
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eration through object catalog selection [1,2,3] and adjustments of spatial [4,2] and ap-
pearance [4,3] attributes, but these often do not generalize well. Furthermore, none as-
sessed user control for generating virtual environments.

To investigate human control in virtual environment generation, we designed a VR
testbed, including the input modalities (controller, hand, or voice input) and generation
steps (creation, movement, scaling, coloring, and deletion). In a pre-study, we assess
which input modalities support the generation steps best, revealing a combination of
initial voice and subsequent controller input. Using these modalities, we examine how
humans can control the generation process to meet their expectations, using the control
strategies all-at-once, creation-before-manipulation, and step-by-step (RQ1). While all-
at-once reduced object manipulations, participants felt higher control using step-by-step.

Contribution Statement. We propose a VR test application for environment gener-
ation, including controller, hand, and voice input for the generation steps. Using the
most suitable input modality for each generation step from a pre-study (N = 18), we
conduct a user study (N = 27) to compare three control flows (all-at-once, creation-
before-manipulation, and step-by-step), assessing user control during generation.

2. Related Work

Since we aim to assess the optimal control flow for generating virtual environments
within VR, our research is grounded in input modalities and scene-generation methods
for VR applications.

2.1. Object Interaction Techniques

To create a virtual world, for instance for level design, users need to interact with the
system and the generated objects. These interactions encompass object manipulations,
such as generating and deleting objects, and spatial actions involving positioning and
scaling objects.

Since gestures and speech constitute language [5], approaches like “Put-That-
There” [6] combine gesture and speech to spatially manipulate objects. Participants par-
ticularly preferred speech commands such as “move” for translation, but gestures for ro-
tation tasks [7]. For object translation and rotation in VR, research has shown that hand-
held controllers tend to offer higher performance, usability, and user preference com-
pared to hand-tracking solutions [8]. Further, 3D interfaces performed better than speech
interfaces for positioning and rotating during furnishing tasks in VR [9]. In the context
of scaling operations, gesture-speech-based interactions are more effective than grasping
interactions [10]. Specifically, when gesture and speech were compared, gestures were
rated as the superior modality for scaling objects [7]. For object creation and deletion
as well as text input, speech commands have been found to outperform all other input
modalities [7,9]. Thus, the input modality depends on the specific tasks [11,12].

Controller-based or gesture-based interactions are typically preferred for translation
and rotation tasks, while speech is often preferred for non-spatial operations. However, it
is important to note that many of these studies primarily focused on Augmented Reality
(AR) environments. As our work involves creating subjective virtual environments that
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encompass both spatial and non-spatial operations, we conducted a pre-study to evaluate
which input modalities are best suited for our specific use case in VR.

2.2. User-Assisted Scene Generation Using Machine Learning

Machine Learning (ML) methods have been widely used for the creation of virtual scenes
and objects in VR and AR environments. These methods typically utilize images or
videos as input to generate 3D models and scenes [13]. In the following, we provide
an overview of related research that focuses on user-assisted virtual scene and object
generation, and ways in which users can interact with generative methods.

To create a virtual world within VR, users primarily select objects to design the en-
vironment. They can create a world through catalog selection [1,2,3] or scanning physi-
cal environments [14,15]. Environment building methods vary. Some allow direct object
placement via controllers [14] or combine voice and hand input for placement [4]. Oth-
ers first modify the terrain before object manipulation utilizing hybrid wand/tablet in-
terface [16]. VRSafariPark [17] offers a novel approach, letting users add virtual blocks
to a world tree, representing entities, supporting especially novices with an effective
overview. Environment generation from text input starts with extracting the objects via
voice [18] or text input [19,20,21,22]. To translate requests into actual scenes, the ob-
jects are used to create a semantic scene graph to generate sub-scenes from 3D databases,
which are later adjusted to match user intentions [19]. Alternatively, scenes can be
formed by considering inferred object relations [21,20], scanning real-wold environ-
ments [15,23], or comparing input against annotated datasets and reference images [22].

To generate 3D models for building virtual scenes, current approaches compute mul-
tiple images of an object. Utilizing AI systems, especially GANs (Generative Adversar-
ial Networks), facilitates the generation of images from a textual description. They ex-
cel in generating images using unlabeled training data [24], yet diffusion models sur-
passed them in deriving images from text, offering better scene complexity and image
quality [25,26]. In previous works, users could control the object generation using voice
input, adjusting attributes like style, shape, and categories of the objects generated using
pre-trained text-to-image model [27]. User-driven control of ML techniques has primar-
ily focused on image generation. One example is GANzilla [28], which lets users high-
light areas of interest, analyze clusters, and explore alternate image generation outcomes.
In this work, we aim to assess user control strategies for generating a virtual environment
through generating 3D objects using the Point-E generative network [29].

3. Generating Immersive Environments

To investigate how to give users control over virtual environment generation, we first de-
fine the scope of our generation procedure. Then, we describe the selected input modali-
ties and control flows and our VR environment as a testbed for the evaluation.

3.1. Overview of the Generation Procedure

Immersive environments consist of numerous elements, from scene-specific settings such
as lighting and weather conditions to individual objects’ details and appearances [1].
To reduce the complexity of the generation, we perceive immersive environments as a
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symphony of individual objects existing in the environment. We consider general scene
aspects by using the example of a virtual garden with a fixed configuration (i.e., preset
lighting and weather conditions). For the generation process of the objects, we identified
a set of five different generation steps that can be used to create or manipulate an object.
In the first step, the object itself is created in step creation. Afterwards, the objects can
be manipulated in a spatial manner resulting in the steps: movement and scaling. Last,
the appearance of an object can be changed in the steps coloring and deletion.

3.2. Input Modalities

Existing literature suggests controller is effective for Grab-and-Place tasks [8], hand has
lower accuracy for precise tasks [8,30] but being more intuitive for users [31,30] and
voice input offering easy usage for simple command-based tasks [9] while being used in
more application cases [32]. Given the variety of tasks during environment generation,
it remains unclear which input modality facilitates the control process best: controller
input, hand input, and voice input.

Controller Input. To create an object, we use a virtual keyboard in VR, motivated
by Weiß et al. [9]. Users can then translate, rotate, or scale the object either by pointing
at or grabbing the object and performing the wished transformation, as suggested by
Whitlock et al. [33]. For coloring, we employ a spray gun metaphor, and deletion is
achieved by grabbing the object and pressing a button.

Hand Input. The hand input is designed similarly to controller interaction. Users
create objects using a keyboard, move, and scale objects by grabbing them, color objects
using a spray gun, and delete objects by pressing a button. To select a letter, grab an
object, activate the spray gun, or press buttons in the graphical user interface (GUI), users
perform the pinch gesture by touching the thumb with the index finger.

Voice Input. Voice input allows speaking a specific command, which is transferred
into the desired action. We mapped each generation step to keywords to improve request
recognition when using natural language. Following Bolt’s method [6], we integrated
voice commands with pointing gestures to select the intended object or specify a location.

3.3. Control Flows

A crucial aspect is understanding what temporal order (referred to as control flow)
users want to generate the immersive worlds. We define three control flows: all-at-once,
creation-before-manipulation, and step-by-step. While the Holodeck enables environ-
ment generation with a single voice command (realized as all-at-once), an alternative
is to individually create each object and modify it directly after creating (referred to
as step-by-step). We further introduce a mixed method (creation-before-manipulation),
combining both. We aim to assess:

RQ1: Which control flow for generating virtual environments supports users best
to achieve results that fulfill their goal?

All-At-Once. A detailed initial voice input allows the generation of the entire en-
vironment. The request includes all objects and their attributes like location, rotation,
scale, and appearance. Users can make manual post-generation adjustments.
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Creation-Before-Manipulation. The mixed control flow involves initially request-
ing all environment objects at once, with subsequent adjustments made in separate steps.
It allows pausing object creation, offering users greater flexibility.

Step-By-Step. This approach involves creating and manipulating each object once
at a time. Users first generate a single object through a distinct request and then apply
spatial and appearance adjustments, similar to De Leon et al. [1].

3.4. Implementation of the VR Testbed

Following, we describe the developed VR environment and the input modalities. We used
Unity3D [34] for deployment on the Meta Quest 2 [35]. To realize the controller and
hand input, we used the Meta Interaction SDK [36], and for voice input, we used the
Wit.ai speech-to-text interface [37]. Next, we describe the VR environment as well as
the applied generation and processing technologies.

The Virtual Garden Environment. We designed a garden environment next to a
white house, surrounded by a wooden fence measuring 4x4 meters. To enhance realism,
trees are positioned outside of the garden under a mostly sunny sky. We include two
interaction panels hanging from the veranda: one panel displays the ongoing task and
its duration, and provides a button to confirm task finalization. An additional interaction
panel is present for controller input and hand input.

Voice Recognition. In voice mode, users could activate voice commands using the
controller’s B button. The system recorded voice until a decreased volume signaled
speech completion, or for a maximum of 20 seconds. All recordings are visualized as
feedback. Given the possibility of non-native English speakers participating, recordings
were translated to English using the deep-translator package [38] in Python. Afterward,
Wit.ai’s speech-to-text transcribed the speech, determining its intent and identifying enti-
ties like objects or colors. A command executes if recognized with over 80% confidence.
A successful recognition triggered audio feedback.

Object Generation. Object requests are processed by the Point-E generative net-
work [29], which provides point clouds of the objects integrated using REST. We gener-
ate meshes from these point clouds for colliders to ensure accurate object interaction. The
point cloud and its mesh are loaded into the garden during runtime. With that, we enable
users to create every imaginable object without being limited to an existing database.

4. Pre-study: Input Modalities for Environment Generation

Given the variety of tasks involved in generating environments, it’s unclear which input
modality best facilitates the control process, as related work primarily focuses on spe-
cific tasks [12,11] and AR environments. Thus, in our pre-study, we aim to identify the
optimal input modality for the generation steps in VR. We compare the independent vari-
ables input modalities with three levels: controller input, hand input, and voice input, and
tasks groups with three levels: creation, spatial manipulations (movement and scaling),
and appearance manipulations (coloring and deletion). This research sought to enhance
understanding of VR interaction design, particularly which input modalities best support
user engagement and task efficiency in a virtual environment.

We conducted a controlled, within-subjects laboratory study to explore the suitabil-
ity of three input modalities for the different task groups (see Figure 1). During the study,
our participants should generate objects of varying complexity (creation), move and scale
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Figure 1. Tasks in the Pre-Study: We compared the input modalities (controller, hand, and voice) for the gen-
eration steps (creation, movement, scaling, coloring, and deletion), categorized into three task groups: creation,
spatial manipulation, and appearance manipulation.

objects to predetermined specifications (spatial manipulation), change object colors, and
delete them (appearance modification) with all input modalities. The study incorporated
a Latin square design to counterbalance the input modality and task group order. We
measured the following dependent variables: task completion time (TCT), spatial accu-
racy, usability, user experience, perceived TCT, expectation conformity and the preferred
modality, alongside qualitative feedback through semi-structured interviews after each
task group. Details of the variables are outlined in Table 1.

To determine the required participant number, we conducted an a priori power
analysis using G*Power for a repeated-measures within-factors analysis of variance
(ANOVA), given α = .05 and effect size f = .4. Following our experimental study de-
sign, we set the number of groups to 5 and the number of measurements to 5. G*Power
3.1.9.7 suggested a total sample size of 15 (λ = 24, F = 2.61). Due to our randomiza-
tion, we invited 18 participants for our study. Of the volunteers (15 identified as male, 3
identified as female, and 0 as non-binary), all except one were right-handed, whose me-
dian age was 26.5 years (SD = 4.34,Min = 19,Max = 35). In terms of VR experience,
1 participant reported to have “never” used VR, 5 participants used VR “once a year”,
4 “once a month”, 7 “once a week”, and 1 participant used VR “daily”. For voice con-
trol experience, 2 participants reported to have “never” used voice control, 5 participants
used Voice “once a year”, 6 “once a month”, 1 “once a week”, and 4 participants used
voice control “daily”. Conducted in a room with a 4m× 4m open space, we ensured a
safe and controlled setting for the VR interaction. To ensure the participants’ privacy, we
only recorded pseudonymized data. Our local ethics committee approved the study.

Voice Input and Controller Input Are Preferred for Creation Our quantitative data
shows no significant difference in TCT among the input modalities for creation. De-
spite this, participants perceived hand input as slower than voice input (Perceived TCT,
(t(4.66) = −3.42, p = .005 < .01)), especially with virtual keyboards. Regarding us-
ability, voice input significantly outperformed hand input (t(4.99) = −4.10, p < .001),
whereas participants often referred to the hand input’s accuracy issues as drawbacks.
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Voice input was praised for bypassing manual input despite occasional inaccuracies.
Participants stated that controller interaction was more cumbersome than a voice query
for creation, although they enabled faster typing. Voice input also surpassed hand in-
put in pragmatic user experience (t(5.33) = −2.96, p = .017 < .05) and outperformed
controller input in the overall scores (t(5.33) = −2.58, p = .041 < .05). Our partici-
pants’ modality rankings mirrored these insights, favoring controller input (t(4.67) =
−3.43, p = .005 < .01) and voice input (t4.67) = 4.93, p < .001) over hand input for
creation between the input modalities. These trends indicate a preference for voice and
controller input during creation tasks.

Controller Input Outperforms Hand and Voice Interaction for Spatial Manipulations
For spatial manipulations, voice input was less accurate than controller input (t(3.8) =
−6.08, p < .001) and hand input (t(3.8) = −3.48, p = .004 < .01) for translation and
rotation, and many participants found precise modifications challenging. In expectation
conformity, controller input led to significantly more expected outcomes than voice in-
put (t(3.01) = 9.33, p < .001). The usability scores display higher usability for con-
troller input than voice input (t(4.22) = 5.62, p < .001). Comparing hand input and
voice input, hand input received higher pragmatic User Experience Questionnaire (UEQ)
(t(4.01) = 3.12, p = .011 < .05) and preferred modality scores (t(3.55) = −5.36, p <
.001). While participants indicated technological limitations for voice and hand inputs in
the interviews, hand input was preferred for intuitive interaction. In summary, controller
input displayed an advantage for spatial manipulations, as evidenced by qualitative feed-
back and higher accuracy in translation and rotation. It outperformed hand (t(4.22) =
3.22, p = .009 < .01) and voice inputs (t(4.22) = 5.62, p < .001) in System Usability
Scale (SUS) and pragmatic UEQ scores (hand input: (t(4.01) = 3.39, p = .005 < .01),
voice input: (t(4.01) = 6.5, p < .001)).

Controller Input and Voice Input Are Both Suitable for Appearance Manipulations
Contrary to our expectations, controller input was significantly faster than hand input
(t(9.8) = −10.25, p < .001) and voice input (t(9.8) = −7.88, p < .001) in appearance
manipulations. Although we found no significant difference in TCT between hand in-
put and voice input, participants perceived hand input as slower than voice input (per-
ceived TCT). Hand input further received lower usability scores than controller in-
put (t(3.87) = 5.11, p < .001) and voice input (t(3.87) = −6.03, p < .001). Partici-
pants faced challenges with the pinch gesture interfering with the appearance manip-
ulations for hand input. Voice input (t(4.14) = −4.94, p < .001) and controller input
(t(4.14) = 4.22, p < .001) outperformed hand input in user experience and were strongly
favored (preferred modality, controller input: (t(3.88) = −5.67, p < .001), voice input:
(t(3.88) = 6.70, p < .001)). Between them, controller input excelled in efficiency (TCT),
while voice input was also highly valued for its user experience.

5. Human Control in the Generation of Virtual Environments

We assess which control flow for generating virtual environments provides the most con-
trol over the generation to fulfill their initial vision (RQ1), focusing on the temporal user
engagement in the generation process, ranging from an early to late user intervention.
Following, we outline the study details and its findings. We used the same apparatus as
in the pre-study (see Section 4) and obtained approval from our local ethics committee.
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Table 1. Variables and Their Measurement for Evaluating Input Modalities in the Pre-Study.

Measurement Calculation Measurement Calculation

Task completion Time of first to last task- Perceived TCT 7-Point Likert items: “I was able”

time (TCT) related action “to accomplish the tasks fast.”

Spatial Accuracy Translation (positional offset), Expectation Con- 7-Point Likert items: “The outcome”

rotation (angular distance), formity “of the interactions was as expected.”

scale (scale vector distance) Preferred Modality Modality rating from best to worst
Usability System Usability Scale (SUS) User Experience User Experience Questionnaire

questionnaire [39] (UEQ) Short [40]

5.1. Study Design

We conducted a within-subject design, examining the independent variable control flow,
with three characteristics: all-at-once, creation-before-manipulation, and step-by-step.
We hypothesized that a more automated process (e.g. all-at-once) would likely diminish
the interactions users need to shape their environment. Fewer interactions could lead to
higher usability and allow users to realize their visions faster. Additionally, more inter-
actions could lead to prolonged adjustment times, potentially resulting in users feeling
fatigued, bored, or stressed, potentially negatively affecting their user experience during
the generation. Moreover, given the extended adjustment period and possible negative
feelings, we assumed a less automated approach (e.g. step-by-step) would result in a less
satisfying scene outcome. Thus, we hypothesized:

H1.1 All-at-once leads to higher usability than step-by-step.
H1.2 Step-by-step leads to a worse user experience compared to all-at-once.
H1.3 Step-by-step leads to a less satisfying scene outcome compared to all-at-once.

During the study, participants generated a virtual garden with five objects based on
three scene templates to negate the influence of object types, colors, and positions. We
adopted a Latin square design to counterbalance scene task and control flow, leading to
nine configurations. Our measured dependent variables can be found in Table 2. Follow-
ing the study tasks, we conducted semi-structured interviews for qualitative feedback.

5.2. G*Power Analysis

To determine our required sample size, we conducted an a priori power analysis for a
repeated-measures within-factors ANOVA, given α = .05 and effect size f = .4. Follow-
ing our study design, we set the number of groups to 3 and measurements to 3. G*Power
3.1.9.7 suggested a total sample size of 18 (λ = 17.28, F = 3.32), which we exceeded
by half due to non-existing references for similar studies.

5.3. Participants

We recruited 27 participants (21 male, 6 female, 0 non-binary) for our study of which 17
also took part in the pre-study. All except one were right-handed, and 28.0 years old in
the median (SD = 3.97,Min = 19,Max = 35). The participant self-reported to have used
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VR 3 times “never”, 6 times “once a year”, 7 times “once a month”, 10 times “once a
week”, and 1 times “daily”. They stated to have used voice control, 3 times “never”, 12
times “once a year”, 5 times “once a month”, 3 times “once a week”, and 4 times “daily”.

5.4. Procedure

Before the study, we briefed participants about the goals and procedure, emphasizing
their right to withdraw at any time, and informed them of the recording of the TCT
and task correctness. After they provided written consent, the study began. During the
study, the participants generated a virtual garden based on three provided templates (see
Figure 2), which included pre-defined objects with distinct positions and colors, using
the control flows. They first entered a training scene for each control flow to familiarize
themselves with the generation process. Afterward, participants moved to the actual task,
followed by filling in the SUS, UEQ, and an individual questionnaire before progressing
to the next control flow. The study concluded with a semi-structured interview to capture
qualitative feedback. An entire session took 45 minutes per participant.

5.5. Study Tasks

We utilized the best input modalities for the generation steps from the pre-study: voice
for creation and controller input for the subsequent spatial and appearance adjustments.

Step-By-Step. Participants use voice input to create one object at a time and then
adjust its color and position with the controller. The process halts after each creation to
prevent simultaneous creations until the next object is initiated.

Creation-Before-Manipulation. Participants use a single voice command to initiate
multiple object creations, which appear one after another. They can pause the process to
adjust an object’s appearance or position, allowing step-wise adjustment of all objects.

All-At-Once. Participants generate the entire environment with one voice command,
including objects, colors, and positions. The generation process remains uninterrupted
until completion. Afterward, participants can make manual adjustments.

Table 2. Variables and Their Measurement for Evaluating Control Flows

Measurement Calculation Measurement 7-Point Likert Items

TCT Duration of the study task Perceived Control “I felt like I had full control over the gen-”

Task Correct- Correctly created, placed, “eration process.”

ness and colored objects Adjustment Need “It was never necessary to adjust the scene.”

Manipulation Mean object manipulation Perceived Success “I have accomplished all my goals.”

Time time Perceived Suitabi- “The intervention possibilities were abso-”

Manipulation Number of object mani- lity “lutely appropriate.”

Number pulations Perceived Engage- “I felt very engaged in the generation pro-”

Usability System Usability Scale ment “cess.”

(SUS) questionnaire [39] Temporal Interven- “I had the feeling that I could intervene at”

User Exper- User Experience Quest- tion “any time.”

ience ionnaire (UEQ) Short [40] Perceived Effectivity “I found the input method very effective.”
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(a) Garden view from left, distant corner. (b) Garden view from right, close corner.

Figure 2. During the study, the participants were asked to generate a garden based on a garden template (1).
They could view the template within the study scene (2). A) Shows a participant’s view of the built garden
from one edge, B) from the opposite side.

5.6. Results

Quantitative Analysis For each variable, we first tested for homogeneity and normal-
ity. If met, we proceeded with an ANOVA for parametric data, else we first performed
an Aligned Rank Transform (ART). Following, we only report significant results from
post hoc tests with Bonferroni correction.

We measured a manipulation number of 13 (IQR=16.5) in all-at-once, 18 (IQR=16.0)
in creation-before-manipulation, and 24 (IQR=10.0) in step-by-step. We investigate the
effect of control flow on the manipulation number of our participants, and found a sig-
nificant difference with a one-way ANOVA (F(2,52) = 10.10, p =< .001,η2

p.28). We
found a significant difference for spatial manipulation between step-by-step and all-at-
once (t(3.88) =−4.47, p < .001), and between creation-before-manipulation and all-at-
once (t(3.88) = −2.64, p = .033 < 0.05). We can conclude that all-at-once leads to a
lower manipulation number than the step-by-step and creation-before-manipulation.

Our participants rated the perceived control of all-at-once with 5 (IQR=3.0),
creation-before-manipulation with 6 (IQR=1.5), and step-by-step with 6 (IQR=1.5).
With one-way ANOVA, we found a significant difference of control flow (F(2,52) =
3.88, p = .027 < .05,η2

p = .13) on the participants’ perceived control of the generation.
Post hoc analysis revealed a significant difference between step-by-step and all-at-once
(t(5.81) =−2.58, p= .038< .05). Thus, we can conclude that our participants perceived
higher control using step-by-step than using all-at-once.

Qualitative Analysis Using the thematic analysis [41], two researchers analyzed the
interview responses. We iteratively refined codes grouped them into topics and identified
four main themes: Application Design and User Experience, Advantages/Disadvantages
Input Modalities, Differences of Control Flows, and Use Cases of Generation.

Advantages/Disadvantages Input Modalities. Many participants (15) found voice
input effective. However, challenges, such as the need for clear or loud statements with-
out pausing during voice commands, often resulted in aborted or incorrect outcomes. A
few noted task complexity, mentioning difficulties with longer keywords for positioning.
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For the controller, feedback focused on its ease of use and button allocation. 6 partici-
pants found the spray gun easy to use, while 9 felt manual object positioning intuitive.

Application Design and User Experience. Many participants (10) enjoyed the ap-
plication and found the VR environment creation engaging, “The system was great to
use. You felt like you could do whatever you wanted” (P21). However, participants re-
ported technical issues, especially with voice input, including objects not spawning or
being adjusted as requested. They further had difficulties in selecting objects that were
closely positioned with controller input. 6 participants wished for a different control flow,
suggesting creating single objects with their appearance attributes using voice input fol-
lowed by manual spatial manipulation.

Control Flow Differences. Although appreciating the idea, our participants ex-
pressed all-at-once required a high mental effort due to submitting long sentences. It re-
quired envisioning the entire scene before making the request, including object names,
colors, and positions. Despite these challenges, most participants found all-at-once ef-
ficient. They felt it sped up the generation process by setting colors and placements in
advance, reducing their overall effort, “It was definitely the most efficient and easiest
to use.” (P21, All-at-once). Many participants (9) praised its innovation and expressed
excitement when their requests were executed accurately. For step-by-step, several par-
ticipants (7) found it less convenient, more time intensive, and less effective due to the
manual adjustments. Although they perceived a higher workload for step-by-step, many
participants (10) found it more reliable and predictable, resulting in higher felt control.
One stated having a better overview of what he was doing, while another emphasized
fewer errors. Some viewed creation-before-manipulation as having a higher workload.
Others found it more efficient, facilitating adjustments while awaiting object generation,
“I could already say several things, I already let it work and continued with the next
object or checked another” (P19, Creation-before-manipulation). Due to making manual
adjustments, a few participants perceived greater control, similar to step-by-step.

Use Cases of Generation. Discussing potential applications, many participants en-
visioned home-related uses like interior or garden design (19). Architectural, urban plan-
ning, and video game scene designs were also suggested, with several referencing the
Sims™ game. Overall, participants saw potential in all control flows. For tasks demand-
ing precision, they favored step-by-step for its control. Creation-before-manipulation was
seen as efficient, saving time while allowing subsequent adjustments. For scenarios with
time constraints, where the primary goal is not creation, they considered all-at-once for
its time-saving and streamlined process.

5.7. Discussion

Following, we discuss the findings of our assessment. While the progress of generative
AI might impact input modality selection, generation speed, and visual results, we con-
sider control flows of virtual environment generation as largely unaffected.

All-At-Once: Efficiency in Time-Sensitive Tasks We hypothesized all-at-once to en-
hance usability by reducing user interactions, based on literature [42,43]. However, our
findings did not support H1.1, though they did highlight its efficiency in reducing ma-
nipulations. Participants found manual adjustments in other methods lead to an increased
workload, as supported by Kieras et al. [44], and appreciated all-at-once when time is
prioritized over detail. Despite fewer manipulations, user experience scores did not in-
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crease, potentially due to voice input’s limitations and the mental effort of verbalizing
concepts, supporting prior studies [6,45,7,9]. With no significant differences in usability,
TCT, and task correctness across control flows, all seem suitable for generating virtual
environments. Still, all-at-once’s efficiency might benefit quick design iterations, like
indoor or architectural planning, enabling faster testing of various designs.

Step-By-Step: Preferred for Fine-Granular Tasks We hypothesized that increased in-
teractions in step-by-step might impair user experience by adding cognitive load [44]
and extending adjustment times, negatively impacting user experience [43,42] and scene
quality. Contrary, our findings did not support H1.2 and H1.3. However, participants
found that step-by-step offered enhanced control compared to all-at-once, particularly for
precise spatial tasks, and noted reduced mental workload through iterative adjustments.
Thus, all-at-once’s drawbacks, particularly the cognitive demands and limited voice in-
put affordance, reduced perceived control, in line with Myers et al. [46]. Further, par-
ticipants preferred step-by-step for its ease of use and tactile feedback from controllers,
aiding in precise object placement. Thus, it might be especially suitable for precise tasks
where control and accuracy are primary, while time is less critical, such as fine-grained
customization of gaming environments or room configurations for marketing.

Control Flow Variants Participants suggested alternative control flows, like combining
voice input for object creation and controller input for spatial adjustments. Further, they
wished for customizable processes based on task and personal preferences, in line with
related work supporting adjustments of user interfaces to user preferences [47,48]. When
used in adaptive systems, personal preferences could be recognized after some time and
integrated directly into personal settings regarding the control flow. This finding further
suggests exploring other mixed control flow combinations to enhance user satisfaction
and efficiency while facilitating user adjustments to support their individual needs.

6. Conclusion

We investigated how humans can control the generation of virtual immersive en-
vironments in VR by assessing three control strategies (all-at-once, creation-before-
manipulation, or step-by-step). To do so, we first designed a VR testbed. In a preliminary
study, we utilized it to evaluate the input modalities (controller, hand, and voice input)
for different generation tasks. Combining voice for object creation and controller for
spatial and appearance manipulation was the most effective. Thus, we employed voice
for creation and controller for spatial and appearance manipulation to evaluate the three
control flows regarding their level of control over the generation process. We found that
generating the environment all-at-once resulted in fewer object manipulations, which
points to enhanced efficiency – a sentiment echoed by our participants. However, par-
ticipants felt more control over the generation process when using step-by-step because
the cognitive demands at each step were manageable, facilitating more fine-grain adjust-
ments with fewer errors. Our findings suggest that the control strategy should consider
the application’s focus and the user’s preference for efficiency or control.
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