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Figure 1: We investigated four diferent user performed gestures by directly manipulating a robot; two letter-based gestures 
using a knob as an end efector; and two handshake gestures with a hand as an end efector. 

ABSTRACT 
Efective Human-Robot Interaction (HRI) is fundamental to seam-
lessly integrating robotic systems into our daily lives. However, 
current communication modes require additional technological 
interfaces, which can be cumbersome and indirect. This paper 
presents a novel approach, using direct motion-based communica-
tion by moving a robot’s end efector. Our strategy enables users 
to communicate with a robot by using four distinct gestures – two 
handshakes (’formal’ and ’informal’) and two letters (’W’ and ’S’). 
As a proof-of-concept, we conducted a user study with 16 partici-
pants, capturing subjective experience ratings and objective data 
for training machine learning classifers. Our fndings show that the 
four diferent gestures performed by moving the robot’s end efec-
tor can be distinguished with close to 100% accuracy. Our research 
ofers implications for the design of future HRI interfaces, suggest-
ing that motion-based interaction can empower human operators 
to communicate directly with robots, removing the necessity for 
additional hardware. 
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1 INTRODUCTION 
In recent years, rapid advancements in robotic technologies have 
led to their growing integration in our daily lives, acting as versatile 
assistants in workplaces and homes [2, 28, 34]. These robotic com-
panions enhance human capabilities and efciency and, as such, 
substantially change how we interact with the world [19]. As robotic 
solutions evolve and diversify, their capacity of autonomous ac-
tions increases – with seamless close-contact interactions between 
humans and robots becoming a reality [15]. 
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However, for successful Human-Robot Collaboration (HRC), ef-
fective communication channels must be established for accurate 
transmission of intent and coordination of respective actions [35]. 
Traditional modes of HRI, such as voice commands [6] or touch 
interfaces [3] can efectively convey instructions to robots. Yet, as 
robots take on more complex tasks and work in proximity to hu-
mans – sometimes working hand in hand – the need for a more 
natural and intuitive communication approach becomes apparent. 
Motion-based communication, where humans actively manipulate 
the robot’s end efector, can be a viable solution to this challenge. 
By mimicking how we naturally interact with one another, motion-
based communication bridges the gap between humans and robots, 
promoting a more intuitive and seamless exchange of information 
and – consequently – improved collaboration. 

Therefore, tracking and measuring movements is a crucial as-
pect to consider. Two types of tracking approaches – relative and 
absolute– exist. Inertial sensors (e.g., accelerometers [7]) provide 
relative tracking information, while optical tracking methods (e.g., 
cameras [1]) ofer more exact positional data. Previous studies, 
like those using a Nintendo Wii controller [37], have successfully 
demonstrated gesture recognition using inertial sensors with lim-
ited training samples. In contrast, our approach focuses on mechan-
ical tracking – positioned between relative and absolute tracking – 
using a seven Degrees-of-Freedom (DoFs) robotic arm for precise 
movement data. Our research uses the robot’s joint motion data to 
enable accurate and efcient motion-based communication. 

Gesture recognition has long been recognized as a challenging 
yet crucial aspect of enabling natural and intuitive communication 
between humans and machines. Recognizing gestures using pattern 
recognizers from the $-family has been one of the earlier approaches 
in the feld [4, 5, 40–42, 45], leading to numerous follow-ons by other 
researchers [17, 24, 26, 27]. These recognizers utilize a predefned set 
of gesture templates to match and identify user motions. Template-
based solutions showed robust performance both in 2D and 3D 
spaces [13]. 

Machine Learning (ML) techniques are potent tools for gesture 
recognition [33], allowing systems to learn and adapt to a wide 
range of gestures. Although it may seem intuitive that existing 
ML approaches will work for recognizing gestures directly per-
formed with a robot’s end efector, so far, this remains unproven. 
When designing gestures, afordance plays a signifcant role in de-
termining the gesture vocabulary. An artifcial hand on a robot may 
prompt gestures like a handshake, while the afordance of a knob 
encourages other gestures. 

This work uses the robot’s sensor data to study recognizing 
and distinguishing gestures performed by direct interaction with a 
robotic arm. We performed a laboratory study (N=16) to assess the 
feasibility of four distinct gestures and determine their respective 
recognition accuracy, resulting in a f1-score up to 0.99. Here, we 
demonstrate the feasibility of direct interactions’ usage for robust 
gesture recognition in HRI. 

2 RELATED WORK 
Our research integrates insights from collaborative robots in close-
contact interactions and embodied user input for gesture recogni-
tion and classifcation. 

In HRC, collaborative robots – known as cobots – are increas-
ingly common in various settings, including domestic care [9, 34]. 
They are categorized based on environment sharing [30, 36, 38] and 
types of cooperation [8, 21]. Previous research focused on cobots 
adapting to human movements and behavior, while maintaining 
appropriate distance [31], avoiding collisions [22], and customiz-
ing assistance based on skills [10] and comfort [14]. Supporting 
this,Drolshagen et al. indicated no adverse efects on collabora-
tion when safety aspects are met [16], while Maurtua et al. ques-
tioned study participants that anticipate increased interaction with 
cobots in the future [29]. Efciency in HRC can be enhanced with 
suitable techniques and sensors [11]. The embodiment of cobots 
positively afects perception and trust [47], while touch-based in-
teractions improve non-verbal communication and reduce human 
stress responses [44]. Interactive perception combines physical and 
traditional methods but may be limited by occlusion [25]. 

Gesture recognition plays a pivotal role in HRI. Utilizing the accel-
eration sensor of the Nintendo Wiimote, Schlömer et al. implemented 
gesture recognition by employing a hidden Markov model (HMM) 
for training and recognizing user-selected gestures [37]. Despite 
the small training set, their evaluation demonstrated an accuracy 
between 0.85 to 0.95. Wu et al. proposed a similar approach us-
ing acceleration-based movement data, achieving an accuracy of 
almost 0.99 for four gestures using the FDSVM method. Cabrera 
and Wachs used the Microsoft Kinect sensor to use skeleton data 
for one-shot gesture recognition [12], comparing three classifers 
with accuracy between 0.81 and 0.86. Using a WiFi-based approach, 
gesture recognition for multi-user applications was demonstrated 
by Venkatnarayan et al. [43]. Their system identifes concurrent 
gestures, quantifes the total gesture number, and creates virtual 
samples for diferent combinations using training data from a single 
user. Achieving an accuracy of over 0.90, it can recognize up to 
eight gestures performed simultaneously. 

By leveraging knowledge and techniques from collaborative 
robotics and gesture recognition, advanced systems capable of ac-
curate gesture recognition – while adapting and responding to 
human movements and behavior – become possible. These capabil-
ities result in smoother and more efcient HRC, fostering overall 
safer and more productive interactions. 

3 GESTURE INPUT INTERACTIONS 
We investigate the use of a robotic arm for efective embodied ges-
ture recognition, specifcally focusing on movements that directly 
manipulate the robot’s end efector through physical interaction. 
In domestic care, assistive robotic arms often use multi-fnger end 
efectors comparable to a human hand. For this kind of gripper, we 
use two types of handshakes as natural gestures. The robot’s fanch 
also supports adding a grasping object (e.g., a protrusion). 

Several gestures have been introduced in prior works [23]. Here, 
we selected two letter-based gestures and two handshake ges-
tures, simulating a natural human-like interaction with the robotic 
arm (see Figure 1). To accommodate the difering movements and 
grips between the gestures (letters vs. hand), we attached a spheri-
cal knob for the letters, enabling a frmer grip and smoother motion 
in 3D space. A hand model resembling a human hand was used for 
a more lifelike interactions. 
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Letter Using the knob end efector, we investigated two types 
of motions: circular, represented by the curved letter “S” 
fostering a smooth transition in performing the gesture, and 
linear, represented by the sharp-edged letter “W” consisting 
of several stops for direction changing during the motion. 

Handshake This gesture imitates the traditional human-to-
human handshake and, as such, was performed with the 
hand end efector. Potential applications include an introduc-
tory interaction to initiate communication with a cobot to 
start a procedure. We examined both the formal handshake, 
involving grasping the hand followed by an up-and-down 
movement, and the informal one, also known as the G-lock 
handshake. 

4 STUDY: GESTURE RECOGNITION USING A 
ROBOTIC ARM 

In this study, we introduce a novel approach in human-to-robot 
communication through gesture-based mechanical manipulation of 
a robotic arm. Our method centers on extracting movement values 
from the robotic arm’s joints and does not depend on additional 
tracking requirements. We investigate how mechanical manipula-
tion of a robotic arm can achieve accurate gesture recognition. 

4.1 Study Design 
We conducted a within-subject controlled laboratory study to assess 
the accuracy of gesture recognition. The independent variable were 
gestures, with two pre-selected letter gestures (denoted LS and LW ) 
and two handshake gestures (denoted HS and GL). The gesture 
recognition accuracy serves as the dependent variable. 

4.2 Participants and Procedure 
We recruited 16 participants (6 females, 10 males), aged between 
22 and 35 years(M=27.75, SD=3.96) via mailing lists and social 
media. All participants were right-handed and reported no motor 
functions limitations or injuries. The study received approval from 
our institution’s ethics committee, and each participant received a 
10 Euro remuneration upon task completion. 

Study sessions for each participant began with the experimenter 
explaining the study’s purpose and demonstrating the interaction 
process. Subsequently, participants completed demographic and 
consent forms. At the start of each run, the robot arm end efec-
tor was automatically positioned to a predefned starting point to 
maintain consistency across all participants. The study conductor 
briefed participants on the interaction pattern, allowing them to 
start and stop freely. The conductor then started the recording of 
the robot’s movement. The corresponding movement data were 
recorded while participants were moving the robot arm end efec-
tor in the desired gesture. Each gesture was recorded fve times 
consecutively, totaling 20 recordings per participant. Gesture order 
was counterbalanced using a Latin Square design. Following the 
completion of all recordings, a post-study questionnaire was ad-
ministered. On average, participants fnished the entire task within 
40 minutes. 

4.3 Apparatus 
For our study, we used a Franka Emika robot placed on a fxed table 
at a height of 61 cm [18]. Both types of end efectors were 3D printed 
by the research team; the models were acquired from an open-
source library [32]. Manipulating the robotic arm required setting 
the robot status to the free guiding mode for a safe interaction. We 
afxed a clamp to engage the free guiding mode buttons, allowing 
users to freely execute gestures. This action also deactivated any 
ongoing autonomous movements by the robot. While performing 
the gestures, participants did not receive any additional feedback. 

4.4 Results 
In our analysis, we collected objective and subjective measures. We 
applied non-parametric Friedman tests to detect signifcant main 
efects between gestures. Post-hoc, we conducted Wilcoxon signed-
rank tests (Bonferroni corrected) for pairwise comparisons. The 
efect sizes of the Wilcoxon tests are reported as r (r: >0.1 small, 
>0.3 medium, and >0.5 large efect). 

4.4.1 Objective Measures. For objective measures, we report the 
median (interquartile range) of the temporal and spatial dimensions 
of each gesture in ascending order (see Figure 2 left). 

Temporal: The duration per gesture are: LS=1.78s (IQR=1.05s), 
LW =1.80s (IQR=1.12s), GL=6.68s (IQR=1.12s), and HS=6.83s (IQR= 
0.63s). A Friedman test revealed signifcant diferences between the 
conditions (�2(3)=39.00, p≤0.001, N=16). Post-hoc tests showed sig-
nifcant diferences between GL and LW (W=136, Z=3.52, p≤0.001, 
r=0.62), GL and LS (W=136, Z=3.52, p≤0.001, r=0.62), HS and LW 
(W=136, Z=3.52, p≤0.001, r=0.62), and HS and LS (W=136, Z=3.52, 
p≤, r=0.62), but no signifcant diferences between GL and HS 
(W=62, Z=-0.31, p=1) and LW and LS (W=62, Z=-0.31, p=1). 

Spatial: The maximum distance per gesture are: HS=0.16m 
(IQR=0.06m), GL=0.28 (IQR=0.18m), LW =0.31 (IQR=0.20m), and 
LS=0.34m (IQR=0.27m). A Friedman test revealed signifcant difer-
ences between the conditions (�2(3)=21.38, p≤0.001, N=16). Post-
hoc tests showed signifcant diferences between HS and LW (W=0, 
Z=-3.52, p≤0.001, r=0.62) and HS and LS (W=0, Z=-3.52, p≤0.001, 
r=0.62), but no signifcant diferences between GL and HS (W=116, 
Z=2.48, p=0.066), GL and LW (W=37, Z=-1.60, p=0.700), GL and LS 
(W=36, Z=-1.65, p=0.627), and LW and LS (W=48, Z=-1.03, p=1). 

4.4.2 Subjective Measures. We used the Likert-items for Mental 
Demand and Physical Demand of the NASA Raw-TLX question-
naire [20] to assess subjective measures regarding task load. The 
median task load scores (with interquartile ranges) for each gesture, 
in ascending order, are as follows: For Mental Demand we found 
LW =10.00 (IQR=5.00), LS=10.00 (IQR=11.25), HS=5.00 (IQR=5.00), 
and GL=7.50 (IQR=5.00). A Friedman test revealed no signifcant 
diferences between the conditions (�2(3)=5.23, p=0.156, N=16). For 
Physical Demand we obtained LW =10.00 (IQR=1.25), LS=10.00 
(IQR=7.50), HS=10.00 (IQR=7.50), and GL=12.50 (IQR=10.00). A 
Friedman test revealed no signifcant diferences between the con-
ditions (�2(3)=1.04, p=0.792, N=16) 

Suggested Gestures: Participants were invited to suggest new 
gestures, and most (n=10) recommended knob-based gestures. These 
suggestions ranged from additional letters such as “I”, “L”, or “U”, 
to straightforward non-letter gestures like a straight line “—”, a 
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Figure 2: Measures of gestures, for (frst) temporal, (second) spatial dimensions, and confusion matrices, for (third) inverse clas-
sifcation (cross-validation), the training sample = 0.2, and (fourth) user-independent (cross-subject), with training sample = 0.5. 

checkmark “✓”, and more intricate gestures like a question mark 
“?” or a square “□”. Certain suggestions leaned towards human-like 
interactions, including fst bumps, holding hands, or shaking ob-
jects. This aligns with participants’ impressions of the interaction, 
describing the handshake as “natural” (P5, P6). 

5 GESTURE RECOGNITION 
Applying ML-based gesture recognition, we conducted a cross-
validated classifcation using an 80-20 and 20-80 training-testing 
data set and evaluated a user-independent classifcation. 

Data Analysis. For the training process, we computed four low-
level descriptive statistical values (minimum, maximum, mean, and 
standard deviation) for all positions, as well as velocity and efort 
values per joint for each of the seven joints. This combination 
resulted in a set of 84 features per gesture, per participant. As a 
classifer, we used the Random Forest (RF) implementation of scikit-
learn with default parameters (e.g., 100 estimators) [39]. 

Cross-Validation Classifcation. To analyze the efect of difer-
ences between gestures, we calculated the mean accuracy for each in-
dividual gesture using k-fold cross-validation (k=5). We performed 
the classical 80-20 split of training and test set, and achieved an aver-
age f1-score of 0.99. To further test the robustness of distinguishing 
gestures across participants, we performed an inverse classifcation, 
where the train and test sets were 20% and 80%, respectively. An 
average f1-score of 0.96 was achieved. The confusion matrix of the 
20-80 classifer is illustrated in Figure 2 (right). 

User-Independent Classifcation. To test the generalizability of 
our approach, i.e., its performance against new and unknown users, 
the data set was equally divided into disjoint training and test sets 
(i.e., with no overlap of participants). Classifying two folds achieved 
a mean f1-score accuracy of 0.91 (0.85 and 0.97 respectively). 

6 DISCUSSION 
We investigated gesture recognition by using motion data of a 
robotic arm manipulated by the user, by incorporating relative 
and absolute tracking data of the robot’s end efector. A critical 
consideration is the robot’s inverse kinematics (IK), which may 
deviate from natural human motion due to joint angle constraints. 

Validity of Mechanical Interaction with a Robot. Cross-validation 
produced promising results, with varying train and test set sizes 

achieving f1-scores between 0.96 and 0.99. These outcomes high-
light the potential for solid performance even with limited training 
data. Furthermore, user-independent classifcation demonstrated 
robustness in recognizing gestures, irrespective of users, achieving 
an accuracy rate of 0.91. These fndings underscore the practicality 
of our solution across diverse users and scenarios, particularly in 
systems requiring gesture recognition from diferent individuals. 

Subjective Feedback. Participants perceived the gestures as nei-
ther mentally nor physically demanding, indicating a convenient 
and natural interaction. However, this perception might be infu-
enced by the limited number of repetitions (N=5/gesture). Possible 
applications of this method include interrupting an undesired on-
going task or altering direction through a single, clear, and unam-
biguous command. 

Limitations & Future Work. We selected and assessed various 
gestures with diferent handles for the robot’s end efector, though 
not exhaustively exploring every combination of gesture and handle. 
Furthermore, our repertoire of gestures was limited to just four 
distinct ones. 

Future work will involve expanding the number of repetitions 
per gesture and incorporating additional gestures. We anticipate 
conducting further studies based on this work, potentially involving 
a more diverse range of user groups. This may also encompass stud-
ies exploring the impact of altering robot tasks through mechanical 
input. 

7 CONCLUSION 
We highlight mechanical-based gestures in HRI by manipulating 
two robot end efectors (knob/hand) with four gestures (two letters / 
two handshakes). Classifcation achieved 0.91 for user-independent 
and 0.99 using 80% of the collected data for training. This robust 
gesture recognition establishes mechanical interaction with the 
robotic arm as a feasible, immediate, and intuitive user input. 
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