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Figure 1: In this work, we examine performing direct interactions with the robotic arm as a behavioral biometric.We investigated
six different gestures for three movement categories: Circular: (a) and (b), Linear (c) and (d), and Human gestures: formal
handshake (e) and informal handshake (f). Using Random Forest classifiers, we achieved an average F1-scores up to 0.87.

ABSTRACT
Robots play a vital role in modern automation, with applications
in manufacturing and healthcare. Collaborative robots integrate
human and robot movements. Therefore, it is essential to ensure
that interactions involve qualified, and thus identified, individuals.
This study delves into a new approach: identifying individuals
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through robot arm movements. Different from previous methods,
users guide the robot, and the robot senses the movements via joint
sensors. We asked 18 participants to perform six gestures, revealing
the potential use as unique behavioral traits or biometrics, achieving
F1-score up to 0.87, which suggests direct robot interactions as a
promising avenue for implicit and explicit user identification.
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1 INTRODUCTION
The usage of robots is growing steadily beyond industrial applica-
tions, with robots covering a wide range of functions, from simple
domestic tasks (e.g., vacuum cleaning [50]) to complex technical
assignments (e.g., product assembly [14]). Not only did their applica-
tions diversify, robots – in this case, frequently referred to as cobots
– have become increasingly collaborative and often work closely
together with humans [41]. One notable example is the increased
user independence achievable through domestic care cobots when
supporting people with disabilities in their everyday tasks [12, 42].
Building on this, a particular subset of cobots – i.e., robotic arms –
serve as an extension of human capabilities, creating a symbiosis
that can help users achieve their goals [36].

One important particularity of cobots is that they are frequently
shared between users. This can be on the operator level, e.g., cobots
being used by and shared between differentworkers across shifts [46].
Alternatively, on a recipient level, medical caregivers might use
cobots to care for several patients, often a necessity given the high
cost and limited availability of assistive technologies [42]. While
sharing cobots is often the most efficient resource usage, it poses
an additional challenge for developers. There are several use cases
where human ergonomics are prioritized to ensure a safe, com-
fortable, and efficient collaboration. For instance, in rehabilitation,
where robots need to adjust to a patient’s range of motion [35]. An-
other example is workbench assistance, where cobots are working
with humans on tasks that require precision, repeatability, or man-
ual dexterity such as assembly assistance or handling parts [23]. In
these scenarios, effective robotic solutions must be supported with
identification-based personalization options to accommodate differ-
ent user preferences and – most importantly – consider ergonomic
concerns (a core part of worker well-being and Industry 5.0 [28]).
As Völkel et al. points out, personalization is not only a pressing
requirement for customization but also for elevating acceptance
and trust towards robots [53]. Hence, including functions that sup-
port identifying and distinguishing between users is essential for a
personalized and safe collaboration.

Current solutions range from knowledge-based methods like
passwords to physical tokens as identifiers. However, these solu-
tions are not implicit, requiring additional action from the user [2].
Moreover, they are liable – physically or via observation attacks
– to be forgotten, lost, or stolen. Behavioral biometrics utilize user
interaction with a system for implicit identification, negating many
current approaches’ drawbacks. This strategy has been success-
fully applied in various contexts, including mobile phones [31] and
virtual reality [26, 44]. Behavioral biometrics has yet to be ana-
lyzed in detail for interacting with cobots. Huang et al. suggests
that a robotic arm mimicking users’ movements contains similar
behavioral features that can be used as a distinct trait for identi-
fication [19]. However, whether cobots can successfully interpret

direct users’ movements for unambiguous identification still needs
to be explored.

This work investigates how direct interactions with a robotic
arm can use sensor data to enable user identification. In a laboratory
study (N=18), we compared the feasibility of six different gestures
and their resulting identification accuracy. Our results show that
user identification can work across gestures, with a mean identi-
fication F1-score of 0.87. To validate our method, we conducted a
second round of data collection from a subset of users from the
first session (N=6). Although results showed a decrease in perfor-
mance with a mean F1-score accuracy of 0.54, they reflect a normal
performance of behavioral identification over multiple sessions.
We demonstrate that accurate biometrics-based user identification
is possible without deploying additional sensors. These findings
imply that existing systems can be easily extended with user identi-
fication capabilities. Moreover, we expect this approach to serve as
a continuous and implicit identification method, enabling cobots
to consistently verify the user’s identity while performing other
tasks. Here, we summarize our work’s contributions as an empirical
evaluation of user identification performance across and between
different gestures directly performedwith andmechanically tracked
by a robot arm.

2 RELATEDWORK
Our work intersects two research fields: Human-Robot Interac-
tion (HRI) – particularly collaborative robots – and behavioral
biometrics for user identification.

Human-Robot Interaction. Collaborative robots – cobots – are
becoming increasingly ubiquitous, going beyond manufacturing
industries to other fields like domestic care [5, 40]. As such, the
research field of Human-Robot Collaboration (HRC) is diversifying.
It encompasses categories based on levels of environment shar-
ing [33, 45, 51], type of cooperation [29], and interaction [4, 17]. Fo-
cusing specifically on close-proximity interactions, previous work
has explored how robots adapt to human movements and behavior,
such as maintaining appropriate distance [37], or predicting and
avoiding collision [18]. Other studies underline the collaboration
effect by analyzing how robot movements adapt to specific human
needs, including adjusting to user fatigue [43], providing personal-
ized assistance based on user skill level [7], or adjusting the robot
movements to maximize human comfort during collaboration [10].
According to Bonci et al. [8], more efficient HRC can be achieved
when appropriate techniques and sensors are used.

Studies have shown that physical proximity to a cobot during
collaboration shows no adverse effects when safety elements are
fulfilled [13]. This agrees with findings byMaurtua et al. [30], where
97% of participants in a responsive collaborative setup study de-
clared that the investigated interaction type is foreseeable to be-
come prevalent. Further, human embodiment can positively affect
both the perception of and the trust in the robot [56]. Previous work
has shown that embodied touch-based interactions with robots can
increase the non-verbal communication capabilities of the robot, as
well as attenuate the human’s stress responses [55]. Interactive per-
ception, or the combination of physical and traditional perception
methods, has expanded its range of applications. However, the view
could be occluded by an arm in motion, affecting the perception of
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other sensors [25]. On the other hand, kinesthetic teaching – Learn-
ing from Demonstration –is a well-established method used to teach
robots new skills without the need for robotics or programming
expertise from the user, with a high level of trust [6, 52, 58].

Behavioral Biometrics. Behavioral biometrics relies on recog-
nizing user behavioral patterns for identification and authentica-
tion [3]. This approach involves analyzing various aspects of be-
havior, such as the characteristics of handwriting [32], the timing
of keystrokes [57], distinct walking patterns (gait) [54], speech
patterns [38], stylus usage [9], and other behavioral features that
collectively define an individual’s behavior such as tracked body
movements in VR [26]. Knowing the user’s identity currently inter-
acting with a system allows for improving the interaction through
personalizations, e.g., customization of the interface or loading
preferred settings [22]. While standard identification approaches
require explicit input, behavioral biometrics offers an implicit al-
ternative. Different types of behavior have been used as biometric
features, such as arm and head movements – both well-suited bio-
metric features – in virtual reality context [26, 44]. Similarly, hand
input on standard interface elements in virtual and augmented real-
ity also allows for accurate user identification [27]. Going one step
further, Pohl et al. uses a single button press on a physical button
to distinguish users [47]. Their approach recognizes specific users
through a single press, using a combination of springs and sensors.
Smartphones also use single button interactions for accessible PIN
code entry [24]. These techniques highlight the importance and po-
tential of broadening identification strategies beyond conventional
methods. Exploring behavioral biometrics based on gestures is a re-
cently emerging trend. Imura and Hosobe used a three-dimensional
hand gesture-based method, allowing its user to move the user’s
hand without touching an input device [21]. 2D gestures using
a smart pen showed an identification rate of 87% in a study by
Schrapel et al. [49]. In mid-air, various researchers explored how
3D signatures can be used as a biometric [11, 48]. Similarly, Huang
et al. explore midair gestures in combination with a robotic arm.
They use an optical tracking system tracking the hand and a robotic
arm. The robotic arm mimics the user’s behavior, and they found
that the robotic arm’s movement contains behavior that can be
used as a biometric variable [19, 20].

Summary. Past research emphasizes the wide variety of cobots
applications, and the essential need to identify the collaborating
users. Additionally, there is a growing focus on behavioral biomet-
rics, given its resilience to attacks and its suitability for both implicit
and explicit identification.

3 IDENTIFYING USERS USING A ROBOTIC
ARM

It is clear that behavioral biometrics rely not only on users’ be-
haviors but also on physiological traits that play a vital role. Here,
we focus on the specific case of direct mechanical manipulation of
a robotic arm, as it limits the range of gestures, and accordingly,
poses restrictions on gesture execution.

3.1 Approach
This work proposes a novel approach for accurate user identifica-
tion using a robotic arm. In particular, we focus on gestures as input
techniques through direct manipulation of robot end-effectors. Such
manipulation can happen while the user moves the robot to teach
a specific task or movement, or while doing gestures assigned to a
specific command that the robot interprets. The manipulation of
the robotic arm can be measured by using the mechanical track-
ing of the robot arm joints. Thus, this approach does not require
additional tracking (e.g., optical tracking).

To examine the feasibility of this approach, we specify two cat-
egories of gestures: letter-based gestures and handshake ges-
tures. The former was selected from the work of Huang et al. [20]
and could be used to enter specific commands. Four letters in total
were selected, two simulating circular movements ("O" and "S"),
and two for linear movements ("W" and "Z"). Secondly, we consider
a human-like interaction with the robot, where a handshake is per-
formed. Here, we specified two types of handshakes ("formal" and
"informal"), simulating vertical and horizontal handshake interac-
tions. This could be used to start or during the interaction with an
anthropomorphic end-effector [39].

3.2 Study Design
We conducted a within-subject controlled laboratory study across
two sessions. During each session, we measured the variable (ges-
ture) with six levels (four letter-based and two handshake gestures
– see Figure 1). Our goal was to elicit user input for a range of
gestures, showing the generalizability of our approach rather than
a comparison of different gestures. As the two types of gestures
(letter and handshakes) require different movement inputs, we used
two distinct grasp handles as the end-effector of the robot arm ( Fig-
ure 3). This also considers that robots are typically used for a range
of tasks that can involve different end-effectors. For letter-based
gestures, we used a round knob that allows for easy manipulation
of the robot arm in 3D space. As for gestures mimicking greet-
ings, we used a model resembling a human hand. For each of our
six conditions, participants were asked to repeat each gesture five
times, resulting in 30 gestures per session. We counterbalanced all
conditions in both sessions using a complete Latin-square design.
Our dependent variables were (i) classification accuracy measured
with the F1-score of the trained classifiers, (ii) task load measured
with the raw NASA-TLX [15, 16], and (iii) subjective feedback con-
sisting of individual ratings for the most liked and disliked gestures.
We also asked participants open-ended questions to get further
qualitative insights. All dependent variables were measured in the
first session, while we looked at classification accuracy across ses-
sions. Our work is motivated by the research question to what
extent users can be identified from robot motion when they
directly interact with the robot’s end-effector through dif-
ferent gestures? Inspired by related work, we derived these three
hypotheses:

H1 Users are identifiable with high accuracy through their
behavior contained in direct gestures with a robot arm.

H2 We expect user identification accuracy to drop when train-
ing and testing with different sessions.
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Round Knob End Effector Hand End Effector
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Figure 2: Example plots of robot end-effector position in 3D space (over time) for all six gestures. All 3D scatter plots show one
repetition from one randomly selected study participant to illustrate the captured temporal-spatial data. Blue: start, yellow:
end of movement.

a) b)

Figure 3: Study setup showing the interactionwith the robotic
arm using a knob (a) and a hand (b).

H3 We do not expect any significant differences in temporal,
mental or physical demands between gestures.

3.3 Participants and Procedure
We invited 18 participants (male = 11, female = 7) via mailing lists
and social networks. Their ages varied between 22 and 55 years
(𝑀 = 29.44, 𝑆𝐷 = 7.42). Except for one person, all participants were
right-handed. However, the left-handed person was trained to write
using their right hand at a young age and faced no difficulty using
their non-dominant hand. As this work focuses on direct interaction
with the robot, no forms of motor function limitations or injuries
were reported. We wanted to explore the impact of time on user
behavior. To that end, after nine months, we conducted a second
session with a subset of six previous participants. All participants
were compensated for their participationwith 10 Euros.We received
ethical clearance from our local ethics committee (#20220721).

Upon arrival at our lab, we informed the participants about the
purpose of the study. Next, they provided informed consent and
filled out a demographic form (in the first session). One participant
had prior experience working with cobots. However, none of the
participants had prior knowledge of direct mechanical interaction
with the robotic arm. To that end, the study experimenter proceeded
to demonstrate themovements to the participants and allowed them
to move the robot. This step was done for each gesture. To con-
sistently evaluate all participants, the robot was automatically put

in the same initial position before every interaction. We ensured
that the participants were not within the robotic arm range while
performing this step. Except for the handshake, which had an initial
point of 110 cm, all other gestures had a starting point at a height of
130 cm. The collection setup also involves putting the robot in the
safe interaction or guiding mode. We placed a clamp to simulate a
user pressing the robot’s free guiding mode enabling buttons, allow-
ing a free movement of all seven joints of the robot. The clamp was
carefully placed to hold the buttons, and when moved, the robot
automatically stops, as the free guiding mode is disabled. In our
setup, the robot only automatically moves when returned to the
initial position, otherwise, it is controlled by the participants. There-
fore, the safety of the participants was preserved throughout the
entire study procedure. Once notified, the participant proceeded
to apply the required interaction till they were notified to stop.
Every gesture is recorded 5 times in the first and 7 times in the sec-
ond session. After the first session, participants answered a NASA
Task Load index (TLX) questionnaire [16], following each gesture
condition, to potentially identify differences between the gestures.
Moreover, once all tasks were done in the first session, participants
filled out a post-study questionnaire. The survey collected partic-
ipants’ subjective feedback on their preferred and least preferred
gestures, along with the reasons for their choices and suggestions
for additional gestures. These insights, comparing between hand
and knob handle, inform the development of a gesture vocabulary
tailored to the robotic arm’s movement constraints.

3.4 Apparatus
We conducted the study in a spacious room in our lab (4m x 8m)
with a brightness of 200 Lux. We used a Franka Emika Panda robot
in this study1. The robot was mounted on a table (height = 61 cm).
For the end-effectors, we 3D printed a hand and knob model that
we acquired from an open source library2. Both end-effectors were
printed with PLA. We did not mount any additional sensors but
solely relied on the sensor data provided by the robot arm itself.

1https://frankaemika.github.io/docs/overview.html, last accessed: October 20, 2023
2https://www.thingiverse.com, last accessed: October 20, 2023
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3.5 Data Analysis
The goal of this work is to identify users based on their direct
movements with the robotic arm. We used the data from the first
session for identification across all 18 participants, whereas we
used the second session data to assess the identification perfor-
mance of the participants subset (N=6). We acquired the state of
all the robot’s joints (7 in total) in terms of position, velocity, and
effort. The joints space limits were collected in relative radian val-
ues (𝑟𝑎𝑑). Moreover, we validated the recorded data by replaying it
in Unity3D3, converting the end-effector positions to the absolute
position and rotations values in X, Y, and Z axes, as seen in the
example in Figure 2. After visual inspection of all data, we started
the preprocessing by extracting the performed gestures. Therefore,
idle states before and after the interaction with the robot were
omitted, ensuring that only the user’s movements during gesture
performance were used in classification. For training, we computed
different feature sets. We had two feature sets using descriptive
statistical values (min, max, mean, and standard deviation) and two
feature sets using only the first row, meaning the first row of the
performed gesture execution. Within each of these pairs of feature
sets, we first look into all three aforementioned values per joint
for all 7 joints, resulting in a set of 84 features per recording (7
joints × 3 joint states × 4 descriptive features) and then look into
all values from the replay (position and rotation of end-effector),
resulting in a set of 24 features per recording (2 end-effector states
× 3 spatial coordinates (X,Y,Z) × 4 descriptive features). Each of
the four resulting feature sets is then tested within the first ses-
sion using 5-fold cross-validation with 80/20 splits and also tested
between sessions using 2-fold cross-validation (training with one
session and testing with the other session). The latter, we did as
recent publications highlight behavioral changes over time have an
impact on behavioral biometrics [26, 34]. For each fold, we trained
a Random Forest (RF) classifier (𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 300). Given the
limited size of our dataset, we opted for a straightforward train/test
split and decided against parameter hypertuning. Therefore, we
used the default values for all algorithms, except the number of
trees of the random forest classifier was set to 300 from our previous
experience developing behavioral biometric systems. We applied
RF because it is not a black box model and allows us to look at the
importance of features, contributing to the explainability of our ap-
proach. Finally, we use the resulting F1-scores of our classifiers for
inferential statistics. Here, we applied non-parametric tests, as we
do not assume the normality of our data. Though our experiment
has less power, our results are more robust and not influenced by
outliers or deviations from specific distributions.

4 RESULTS
Here, we present the findings from our user study and training of
classifiers. The objective measures relate to the performance of the
classifiers (trained with the joints and end-effector data), while the
subjective measures are metrics gathered during the user study.

4.1 Objective Measures
We showcase the results derived from the interactions, focusing on
the descriptive features of the robot’s joints and the calculated end-
effector values. In our exploration of user identification for distinct
gestures executed directly with the robot, the first approach we took
is the classical descriptive metrics for these joint and end-effector
values, including theminimum,maximum,mean, and standard devi-
ation. We followed a 5-fold cross-validation, where every repetition
was treated as a test set, and the other repetitions of each gesture
per participant were used for training. The k-fold cross-validation
(k=5) results for the joints values reached an average F1-score of
0.87 (Md = 0.9, IQR = 0.06), whereas a similar cross-validation for
the calculated end-effector yielded results of a mean F1-score of
0.80 (Md = 0.82, IQR = 0.1). Both are plotted in the Figure 4 in the
left plot. We sorted the features based on their importance, i.e.,
contribution to the classification accuracy. The list of the ten most
important features in the joints dataset contained six position fea-
tures of different joints. In regard to the end-effector data, we found
that position and rotation values from the Y and Z axes were more
important to the classifier in comparison to the values in the X axis.

To understand the performance of the different gestures, we
investigated user identification accuracy for each gesture individ-
ually. We used k-fold cross-validation (k=5) to train five classi-
fiers for each gesture. As every participant performed each ges-
ture five times, each repetition served as our test set once, while
the other four repetitions were used for training. Thereafter, we
aggregated the F1-scores of each fold for each participant indi-
vidually by calculating the mean across all five folds. The mean
(median; interquartile range) F1-scores over all participants for
each gesture are (in descending order): Letter Z=0.91 (Md=0.93;
IQR=0.20), Letter W=0.87 (Md=0.93; IQR=0.20), Informal Hand-
shake=0.87 (Md=0.93; IQR=0.20), Letter S=0.86 (Md=0.87; IQR=0.25),
LetterO=0.85 (Md=0.93; IQR=0.23), and Formal Handshake=0.78
(Md=0.80; IQR=0.26), as plotted in Figure 4 (right). A Shapiro-Wilk-
Test showed that our data is not normally distributed (p < 0.001),
and therefore, we applied non-parametric tests. Post-hoc tests using
a Wilcoxon test with Bonferroni correction did not show specific
pairs of gestures with significant differences in F1-scores.

Following the promising results of the descriptive features, we
investigated the extent to which the beginning of the gesture ex-
ecution contributes to the classification accuracy. Although we
standardized the robot’s initial static pose for all participants, our
emphasis was on the pose at which participants started to perform
the gesture (these differ between participants as we extracted the
execution of the gesture from the complete recording of the repeti-
tion). Accordingly, we trained our classifier with only the first row
of each repetition. Following the same approach of 5-fold cross-
validation, the results showed an average F1-score of 0.58 (Md =
0.56, IQR = 0.04) and 0.37 (Md = 0.39, IQR = 0.01) for the joints and
end-effector data, respectively.

Examination of Behavior Across Extended Periods. Lastly, we eval-
uated the behavior variability across extended periods through a
between-session analysis, where both sessions were used for train-
ing and testing. Compared to our previous analysis, we could only

3https://github.com/niccarey/FrankaPanda_Unity, last accessed: October 20, 2023
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Figure 4: Boxplots of F1-scores for user identification 5-fold cross-validation for all 6 gestures for descriptive features(left), and
between gestures (right). Both boxplots show the results in terms of robot joints and end-effector values.

differentiate between six participants, as we were unable to re-
recruit more of the initial set of participants for the second session.
The results showed an average F1-score of 0.54 and 0.51, for the
joints and end-effector data, respectively.

4.2 Subjective Measures
We gathered ordinal data from our Likert items asked during the
user study. Accordingly, we directly apply non-parametric tests for
inferential statistics. For task load, we asked participants to fill out
a raw NASA-TLX questionnaire after each condition [15, 16]. The
median (interquartile range) task load scores for each gesture are
(in ascending order): LO=10.83 (IQR=11.04), LZ=10.83 (IQR=11.25),
Formal Handshake=10.83 (IQR=15.83), Informal Handshake=12.08
(IQR=7.92), LW=12.92 (IQR=8.13), and LS=14.58 (IQR= 13.75). To
compare task load between gestures, we performed a Friedman
test that did not reveal any significant differences between the
conditions (𝜒2(5)=1.48, p=0.915, N=18). For individual dimensions
of the raw NASA-TLX, refer to Figure 5 for the task load scores.

After all conditions, we asked participants which gesture they
liked most and which one they liked the least. Concerning the
most liked gesture, participants stated that they liked the vertical
handshake (Formal Handshake) the most (n=9), followed by the
letter “O” (LO) (n=4), the horizontal (Informal Handshake) (n=3),
and letter “S” (LS) and letter “W” LW with each one vote. With
regard to the least liked gestures, participants mentioned that they
disliked the letter “Z” (LZ) the most (n=6), followed by the (Informal
Handshake) (n=5), and then voted equally often for the letters “O”,
“S”, “W” (n=2). One participant voted for the formal handshake as the
least liked one. When asked about the reason for selecting the most
liked gesture, 7 out of the 9 participants choosing handshake stated
that it was natural and “easy to perform”, while those who chose
the letter “O” (LO) stated that it provides an "intuitive" sense for the
interaction, and "easier to perform". On the other hand, participants
said that sharp lines were difficult to execute, that the sharpness
made it “mote demanding to think about and to execute". Finally,
we asked the participants to create their own gestures. Responses
included "fist bumps", other letters or symbols such as I, L, or the
interrogation mark (?).

5 DISCUSSION
Mechanical Tracking Enables Behavioral Biometrics. We investi-

gated user identification through mechanical tracking using robot
arm joints. By selecting six different gestures unified across partici-
pants, we found that movements encoded in the joints could, in fact,
be used as a behavioral metric for user identification. Following this
approach, we were able to leverage the usage of the seven joints of
the robotic arm sensors to gain information about the identity of
the user beyond the typical use cases (e.g., manufacturing). With
a base chance of 1/16 (6.25%) and our F1-score accuracy reaching
up to 0.95 for some folds, we accept our first hypothesis (H1) that
users are identifiable through the behavior contained in direct gestures
with a robot arm with a high accuracy. The results show a minor
decrease in performance when compared to the related work of
Huang et al., who reported 100% accuracy using an optical tracking
system, yet with a lower number of participants (N=10) and more
repetitions (40) using similar letter-based gestured [19, 20]. We as-
sume that – besides the number of participants and sample size –
employing mechanical tracking results in a lower accuracy since it
reduces some of the variance in the movement through its inertia.
However, in our approach, we do not require additional tracking
hardware, allowing each robot to be used without modifications for
user identification, highlighting the impact of our study findings.

Importance of Individual Features. Interestingly, we found that
the starting point of the interaction plays an important role in the
user identification performance. When looking at our results for the
“first-row” feature sets, we reached a classification accuracy of up to
0.69 for one of the folds (which is only 20% less than the feature sets
with all descriptive features reached). This means that we could
infer that the starting point of the interaction contributes greatly
to the user identification. We believe this might result from the
diversity in physiological characteristics of the users, such as arm
length and body height. In previous work, it has been demonstrated
that physiological traits are often included in the elicited behavioral
data [26]. As many gestures share the same starting point (e.g.,
the letter “Z” and “S”), it points towards the generalizability of
our findings, suggesting that our trained classifiers may also scale
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Figure 5: Raw NASA-TLX medians in six subscales across the six gestures. Scores range from 0 (low demand/perfect) to 20 (high
demand/failure). The results show that no gesture was demanding in any sub-scale.

towards gestures not seen during training (if the utilize the same
starting point). However, more research is needed to confirm this.

Gesture Performance Across Sessions. With a second session of
collection, our findings show an observable drop in accuracy per-
formance despite the smaller sample size (18 participants in the first
and six participants in the second session). However, the resulting
accuracy is not only in line with our second hypothesis (H2) that
expects an accuracy performance change, but also with the accu-
racy declines typically found in papers using hand movements and
behavioral biometrics (e.g., Liebers et al. [26]; Pfeuffer et al. [44],
and Miller et al. [34]). As a consequence, the behavioral biometric
system needs continuous training to remain of good quality. While
the drop in accuracy is quite drastic in our case, we believe this is
due to several factors. First, the time difference between the two
sessions is large (9 months), which could result in imperceptible
yet considerable physiological changes affecting the identification
performance. In addition, due to the unfamiliarity of the direct
robot interaction, participants might exhibit inconsistent of fluc-
tuating behavior. Therefore, we expect improved and more robust
identification performance with continuous usage of this approach.

Direct Mechanical Interactions Are Not Demanding. As we ex-
pected in (H3), such gesture-based interactions would not be de-
manding to the users, particularly in terms of temporal, mental,
or physical load. We based our hypothesis on the nature of our
approach, which is not time stressing, as there was no temporal
condition to complete the task. Moreover, we considered in our
design gestures that are already known to the users (letters or hand-
shakes). Performing such gestures would not require prior training
or induce a particular mental load to perform the tasks. Additionally,
we did not specify any requirements to perform the gestures (e.g.,
certain dimensions of the letters) to avoid altering their behaviors.
Subjective feedback findings supported these arguments. Partici-
pants’ NASA-TLX responses show that the tasks were not mentally,
physically, or temporally demanding. In the open questions, no
participant reported any issues with performing any of the tasks.
They rated their most and least liked gestures based on preference
and convenience.

Limitations and Future Work. In our user study, we used two
distinct robot end-effectors – knob and hand – to accommodate the

different types of gestures that we investigated. The human-like
hand allowed for natural greetings, while the knob enabled easy
spatial manipulation when performing a letter-based gesture with
the robot arm. We acknowledge that our study design (combining
end-effector and gesture) does not allow for investigating effects in
isolation. Moreover, we recognize that the number of repetitions in
the first and second sessions (n=5), though convenient for the study
duration, is rather limited. It remains uncertain if the collected data
is sufficient to train data-demanding Deep Learning (DL) classi-
fiers [1]. To that end, we plan to expand our collected data in two
directions. First, we plan to investigate different gestures with mul-
tiple end-effectors. Second, we consider extending the number of
repetitions per condition to be able to investigate the identification
accuracy with more extensive data for different classifiers.

6 CONCLUSION
With accuracies between 0.80 and 0.87, we found that the inves-
tigated approach – particularly through letter-based gestures – is
well-suited as a biometric. In a follow-up study with a subset of
participants from the first study, we evaluated our classifiers and
reached an accuracy of 0.54. Focusing only on the starting point of
interaction, reaching an accuracy score of 0.56 suggests the ability
of this approach to generalize to a broader set of gestures.

Our work implies that existing robot arms can be easily extended
with user identification functionality, negating the demand for ad-
ditional hardware. The results also suggest that user identification
while interacting with a robot will eventually be feasible through
behavioral biometrics. While we explicitly asked participants to
perform specific and somewhat complex gestures, this approach can
be adapted for implicit identification with simpler, more straight-
forward gestures (e.g., nudges).
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