Vision, Modeling, and Visualization (2022)
J. Bender, M. Botsch, and D. Keim (Eds.)

Visually Comparing Rendering Performance from
Multiple Perspectives

Hagen Tarner! , Valentin Bruder? , Steffen Frey3 , Thomas Ertl? , and Fabian Beck*

! University of Duisburg-Essen, Germany
2 University of Stuttgart, Germany
3 University of Groningen, The Netherlands
4 University of Bamberg, Germany

Figure 1: Performance comparison of different streamline rendering techniques at different views—represented via blue nodes with stylized
frustums—along a camera path (stippled gray line). The data domain is depicted by a gray bounding box for context. Performance data is
conveyed via radar charts with one axis per technique, accompanied by corresponding rendered images. This clearly shows the different
performance characteristics across techniques and how they vary under changing camera configurations.

Abstract

Evaluation of rendering performance is crucial when selecting or developing algorithms, but challenging as performance can
largely differ across a set of selected scenarios. Despite this, performance metrics are often reported and compared in a highly
aggregated way. In this paper we suggest a more fine-grained approach for the evaluation of rendering performance, taking into
account multiple perspectives on the scenario: camera position and orientation along different paths, rendering algorithms,
image resolution, and hardware. The approach comprises a visual analysis system that shows and contrasts the data from
these perspectives. The users can explore combinations of perspectives and gain insight into the performance characteristics of
several rendering algorithms. A stylized representation of the camera path provides a base layout for arranging the multivariate
performance data as radar charts, each comparing the same set of rendering algorithms while linking the performance data
with the rendered images. To showcase our approach, we analyze two types of scientific visualization benchmarks.

1. Introduction choosing a suitable technique for a given scenario. This gener-
ally requires analysis and comparison of metrics such as frame

Evaluating the performance of graphics and visualization render- rates. Benchmarks are generally designed to cover representative

ing techniques is essential when introducing a new approach or

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://orcid.org/0000-0001-6240-560X
https://orcid.org/0000-0001-5063-4894
https://orcid.org/0000-0002-1872-6905
https://orcid.org/0000-0003-4019-2505
https://orcid.org/0000-0003-4042-3043

H. Tarner, V. Bruder, S. Frey, T. Ertl & F. Beck / Visually Comparing Rendering Performance from Multiple Perspectives

runs and are used to measure the overall performance of a tech-
nique. Comprehensive benchmarks generate numerous measure-
ments which generally vary significantly depending on a wide
range of influencing factors like camera configuration, compute
hardware, resolution, etc. Detailed analysis of the characteristics
of this complex parameter space is a challenging problem, and for
practical purposes the measurements are often condensed into one
or few scalar numbers (e.g., average frame rate or percentiles).
However, aggregating performance to a single or few values pro-
vides only a limited, superficial perspective as performance differ-
ences between rendering techniques might interact strongly with
the above influence factors. Better understanding these detailed dif-
ferences could help, for instance, selecting the best technique for a
specific scene, avoiding problematic camera perspectives, inform-
ing a fair comparative evaluation, detecting quality mismatches be-
tween the techniques, and improving a technique.

Our approach, hence, is more fine-grained and supports the vi-
sual comparison of rendering performance taking into account mul-
tiple perspectives: different camera paths, different rendering tech-
niques, and different hardware. Following the movement of the
camera through a scene and using this as a basis for visualiza-
tion provides a natural contextualization of the data and eases
interpretation—connecting the performance data to the camera
view is key for understanding view-specific performance charac-
teristics. We specifically support the following analysis tasks:

e T1: Compare the performance of rendering techniques for a spe-
cific camera configuration in context of the rendered images.

e T2: Show the performance of rendering techniques as part of a
camera path and support the comparison of different paths.

e T3: Identify clusters and respective outliers of data points with
similar performance characteristics across the techniques.

e T4: Study interactions of performance with other rendering pa-
rameters and hardware setups.

In the visualization, as shown in Figure 1, techniques are com-
pared with respect to different camera configurations, and perfor-
mance data is linked with rendered images. A stylized representa-
tion of the camera path and the bounding box of the main scene
(gray area) provide the base layout. Multivariate performance radar
charts compare the same set of rendering techniques next to the re-
spective renderings (T1 and T2). Integrating this visualization as
a main view, we developed a visual analysis system for compar-
ing multivariate rendering performance. Additional views compare
the performance of different rendering techniques in scatterplots
and tables (see Figure 3; T3). Clusters and outliers can be selected
for closer analysis and connected to specific setups (T4). This is
complemented by an overview of all recorded camera paths (see
Figure 2; T1 and T2). The supplemental material contains a video
demonstrating interactions and a typical analysis workflow.

With this approach and system, which we call Multiple Perspec-
tives, we target scientific visualization developers and researchers.
Our work supports them in evaluating rendering techniques as well
as forming hypotheses for improving the techniques, which we
showcase in two application examples (see Section 5 and the sup-
plemental video). We have developed the approach in close collab-
oration of researchers from the area of performance and software
visualization and of scientific visualization.

2. Related Work

The proposed approach both relates to scientific visualization as
part of the problem domain (i.e., rendering performance) as well as
information visualization and visual analytics as part of the solution
domain (i.e., visual analysis of performance data).

Evaluating Rendering Performance Several works on evalu-
ating rendering performance of scientific visualizations conclude
that performance substantially varies based on the rendered dataset,
hardware, and parameters such as the camera perspective, often in
non-obvious ways [BH12; LHK*16; BMFE19; BLE*22]. Bench-
marks such as SPECviewperf [Sta21] have been proposed to gener-
ate a standard for measuring graphics performance. However, typ-
ically, performance of scientific visualization algorithms is still re-
ported only as runtime speed in a single figure or table, evaluated
on a single hardware platform for a few different datasets [[IC*13;
BMFE19]. Some works, in contrast, contain a more fine-grained
evaluation and present results on runtime behavior for different
camera paths, dataset sizes, or differences in image quality. Wang
et al. [WYC17], for instance, conduct an in-depth performance
evaluation in their work on a cache-friendly sampling strategy for
volume rendering. They consider multiple viewports, datasets, and
camera rotations, while only evaluating one GPU. Other volume
rendering works use hundreds of different camera views by record-
ing user interaction sequences for several datasets, but limit their
evaluation to one viewport and device [FSME14; BFE17]. Regard-
ing particle visualization, for example, Wald et al. [WKJ*15] and
Knoll et al. [KWN*14] evaluate several devices, datasets, and two
views each. But despite these individual examples, overall, perfor-
mance evaluation in scientific visualization will profit if researchers
and developers can visually explore the performance data.

Performance Visualization In both industry and academia, vi-
sualization is an integral part of the performance analysis of ren-
dering algorithms. There are various vendor- or hardware-specific
tools that visually assist in profiling, finding bottlenecks, and op-
timizing performance [AMD21; NVI21; GGA11]. They typically
allow for a detailed analysis of (low-level) hardware specifics, but
do not embed the results within the context of the rendered scene
and do not explicitly support the comparison of different tech-
niques. Not specific to rendering, Isaacs et al. [IGJ*14] review nu-
merous general performance visualization techniques, and also de-
scribe application-specific solutions. For instance, performance can
be visually mapped to the physical space of a simulation. Follow-
ing this line, Schulz et al. [SLB*11] observe that application devel-
opers often find visualized application contexts to be highly intu-
itive when analyzing runtime performance. They uncovered perfor-
mance bottlenecks by visually arranging performance counters of
processors by the physical region they simulated. Similarly, Wylie
and Geimer [WGI11] reveal performance bottlenecks by attribut-
ing the physical space with computation times. With our technique,
we do not visualize simulation performance but provide application
context, here camera perspectives. Moreover, our approach also re-
lates to visual comparison [GAW*11; LJS21] of performance data,
especially if performance is described as multivariate data [SH94;
PDW#*14]. To visualize it, researchers use standard techniques for
multivariate data visualization [TFPB18; TFPB20] or specifically
tailored visualizations [SBB19; BBRB12; PGFLO05]. In our work,

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

H. Tarner, V. Bruder, S. Frey, T. Ertl & F. Beck / Visually Comparing Rendering Performance from Multiple Perspectives

we use a highly interactive custom visualization to compare the
performance of different rendering techniques and their outputs.

3. Rendering Performance Data

Rendering performance can be measured from multiple perspec-
tives, and it is important to consider these within an evaluation.
Scene s € S and camera configuration ¢, € Cy define the image
content, and resolution r € R specifies the number of pixels. Cam-
era configurations c; belong to a sequential camera path Cj, € C.
With this, a rendering algorithm and corresponding parameter set-
ting p € P are employed; the combination of algorithm and respec-
tive parameters defines a specific instantiation that is referred to as
technique throughout this paper. A technique is executed on a cer-
tain hardware architecture and model 7 € H. In total, the synthesis
Y of an image i € / yields an execution performance x € X:

(x7 i) = ’YsﬁCk,p,h.r(Ck)' (1)

The camera configuration ¢ plays an important role as it is con-
stantly varied in interactive approaches, while the other impact fac-
tors typically remain constant. Camera paths C; naturally reflect a
specific animated scene navigation of a user. Also, the ordering can
have a performance impact through caching effects—it might mat-
ter in which order the respective configurations were rendered, and
rendering gets more efficient if previous rendering results can be
partly reused. The scene s and camera configuration ¢y in particu-
lar have an impact on the image itself, but the technique p generally
also influences the quality. Depending on the parameter, available
options P might be numeric (e.g., step size along a ray in volume
raycasting), categorical (e.g., graphics cards € H), or combinations
thereof. While any performance metric can be represented by X,
we consistently use frames per second (fps), as a common metric,
and have optimized the visualizations for its properties.

For a (comparative) analysis of each variable’s impact, we sys-
tematically sample the input parameter space (S,C,P,R,H) of
Equation 1. In practice, a problem is though that testing many
parameters and configurations of each influential factor is diffi-
cult as the number of necessary runs quickly ‘explodes’ (|S] -
Y«|Ck| - |P| - |R| - |H|). Hence, parameters need to be restricted
to a small number of essential ones and only varied across few
configurations. We, hence, focus on the rendering part of the vi-
sualization pipeline, not considering filtering and mapping oper-
ations that generate the renderable representation (scene s) from
raw data. One specific sample yields a vector (s, cy, p,r, b, x,i), with
(x,1) = Ys,c,.p,hr(ck) (see Equation 1). Since we focus on compar-
ing techniques p € P, as a basis for these investigations, a data point
constitutes a vector of performance measurements (x,Vp € P) with
(Xpsip) <= Vs, poii (Ck) for fixed s € S,¢; € Cy,7€R,andh € H.

4. Multiple Perspectives — Visualization Approach

We propose Multiple Perspectives, a visual analysis approach for
analyzing rendering performance. The design of the system was re-
fined in short iterations, discussing each intermediate stage within
the team of authors, which comprised two experts in software per-
formance visualization and two domain experts in scientific visu-
alization. Mostly regular (bi-)weekly meetings for about one year

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

have driven the development of the approach and provided contin-
uous feedback. This process has led from first prototypes that con-
sisted only of standard multivariate data visualizations (e.g., scat-
terplots, tables, parallel coordinates plots) to the current highly tai-
lored approach. With each iteration of prototypes, we also refined
the list of analysis tasks, which in turn reflected back on the proto-
type and guided central design decisions.

During this process, we identified the following three key design
decisions: (I) use radar charts as the main way of depicting multi-
variate performance data, (II) split the input parameter space into
meaningful subsets for visualization based on different scenes and
camera paths, and (III) use a projected camera path as a base lay-
out for the main visualization. Radar charts can be considered as a
variant of parallel coordinates plots where the axes are arranged in
aradial layout. In contrast to parallel coordinates plots, they usually
only show one or few data items, but the lines form characteristic
shapes that can act as fingerprints or indicators of visual similarity.
In our case, each axis represents one technique p and shows the me-
dian performance measurements for the respective technique. The
design decision to use radar charts consistently across all views was
motivated by their compact representation, their ability to form in-
terpretable and memorable visual patterns, and their relative sim-
plicity. This decision was made after first using a single parallel
coordinate plot to represent the whole dataset of multivariate per-
formance data. Due to visual clutter and scalability issues, we de-
cided to split the data per camera path and sampling point.

We implemented our approach as a web-based system using
Vue. js, D3.Js, and three. js. The application is divided
into the Dataset Explorer (Section 4.1) and the Camera Path Ex-
plorer (Section 4.2). The Dataset Explorer gives an overview over
all available camera paths for a selected dataset and their perfor-
mance characteristics. Selecting one opens the Camera Path Ex-
plorer, which features a highly interactive custom visualization to
explore rendering performance of a single camera path.

4.1. The Dataset Explorer

After selecting a dataset s € S, the Dataset Explorer shows a grid
of small multiples representing all available camera paths C;, € C,
each as a combination of a 3D thumbnail and a radar chart (see Fig-
ure 2). With this view, we address tasks T1 and T2 from a higher
level of abstraction, providing a summarized preview of the perfor-
mance data comparing different camera paths.

On the left of each box that represents a camera path, a zoomable
and rotatable 3D thumbnail provides spatial context. It shows the
bounding box of the main scene drawn as a gray cuboid. Each cam-
era position ¢ along a camera path Cy, is rendered as a blue sphere,
and the points are connected to indicate the camera movement. Be-
low the 3D representation, we show a set of thumbnails, displaying
the rendered images along the camera path. We show only one im-
age i for each sampled camera position c¢j. The parameters p, hard-
ware h, and resolution r are set to default values as they typically
do not have a noticeable effect on thumbnail-sized images.

To give an overview of the recorded performance metric for each
camera path, we use radar charts as motivated above. The data dis-
played in the chart is filtered by the selected scene s and camera

H. Tarner, V. Bruder, S. Frey, T. Ertl & F. Beck / Visually Comparing Rendering Performance from Multiple Perspectives

OSPRay / velb-volume / diagonal

OSPRay / velb-volume / complex-vdb-volume

=a OSPRay / velb-volume / orbit-x

Tips

Figure 2: One row in the Dataset Explorer (Section 4.1) showing for each camera path an interactive 3D abstraction of the path, rendered
sample images, and aggregated performance metrics. Depicted are three of the nine recorded paths of the OSPRay example (Section 5.1).

path Cy, but aggregated across all camera configurations along the
path ¢, € Cy, resolutions R, and hardware setups H. In other words,
the chart summarizes all data points x, (which are vectors of perfor-
mance measurements that relate to the camera path, see Section 3)
comparing the techniques in P on the different radial axes. In order
to better assess the performance values, we add common fps rates
(30, 60, 144 fps) as reference lines.

The small multiples of the Dataset Explorer allow for a quick
comparison of the characteristics of the different camera paths.
With its focus on only two freely selectable parameters for com-
parison (dataset s € S, and camera path Cy), we effectively split
the possibly large input parameter space into manageable subsets,
which can be analyzed in more depth in the Camera Path Explorer.

4.2. The Camera Path Explorer

The Camera Path Explorer (Figure 3) addresses all analysis tasks
T1-T4 on a detailed level and consists of five views:

I. Camera Path View—a 2D abstraction of the camera path en-
riched with radar charts comparing the performance of render-
ing techniques next to the respective rendered images (T1, T2).

II. Clustering Panel—an interactive scatterplot that shows a 2D
projection of all data points (T3).

III. Comparison Panel—a correlation matrix to compare all tech-
niques, from which a scatterplot can be selected for a detailed
comparison of two techniques (T3).

IV. Faceted Browsing Panel—a faceted browsing interface to sub-
select data points (T1, T4).

V. Data Table—a table with selected data points (T1, T4).

The Clustering Panel, Comparison Panel, and Facet Browsing
Panel support sub-selection of data points via mouse brushing. All
visualizations are linked to display the respective sub-selections.

Camera Path View The sampled camera configurations c; of
the selected three-dimensional camera path Cy, serve as a base lay-
out for our main visualization and allow to spatially contextualize
the performance information (T2). We project the camera path to a
non-rotatable plane in order to create a recognizable map-like rep-
resentation of the path. This simplifies the visual representation and
navigation. We determine the plane by minimizing the distance to
all sampled camera positions of the respective path. The vertices of
the bounding box of the scene, which are shown as a gray cuboid,
are projected to the plane using the same method.

To handle camera paths with hundreds of sampling points, we
allow automatic and adaptive aggregation into path segments. To

identify start and end points of these segments, we give each sam-
pling point an importance value. Importance values are calculated
based on the cosine distance of performance metrics of adjacent
camera positions. A high cosine distance reflects a change in the
multivariate performance data and indicates a candidate for seg-
mentation. Ordering the list of points by importance value priori-
tizes these candidates. We determine a cut-off value for the list of
points that limits the number of generated segments, while still pre-
serving important differences. During development we found our
approach to work best with a total segment number between 11
and 30, depending on the currently selected data points. We use a
dynamic cut-off value by calculating the pair-wise differences of
importance values and finding the maximum value in the range be-
tween elements 11 and 30. The resulting candidates are used for
segmentation, and all data points of a segment get aggregated. The
segmentation adapts to filtering and selection and re-generates seg-
ments each time the analyst selects other data points. This way, we
can ensure that the application always shows enough information
to highlight interesting sampling points, while not overloading the
user with too much data. The segments (solid gray lines) are plotted
on top of the original camera path (dashed gray line) as can be seen
in Figure 3 1. We use the median camera position in the segment
as a representative of that segment, for which we add a light blue
triangle representing the camera’s direction and field of view.

Each segment of the camera path is connected to an overlay box
showing the performance of the techniques and images correspond-
ing to the median index (T1). The image component on the left con-
sists of two parts: a thumbnail-sized preview of the rendering result,
and a magnified version of a selected image. Image selection can be
done by hovering a thumbnail (sticky selection by clicking), allow-
ing for a quick comparison of the rendering results. To highlight
outliers with unexpected high visual deviations, we calculate the
structural similarity (SSIM) [WBSS04] between each image pair of
a data point. If the minimum of the SSIM values is below a thresh-
old, we display a red marker indicating major visual differences
(see Figure 10). A radar chart that visualizes performance on the
right uses the same design as the ones in the Dataset Explorer (Sec-
tion 4.1). Aggregating all data points x;, for this camera segment,
it shows the median fps values with one technique per axis. When
data points get interactively sub-selected, the radar chart updates
accordingly and only aggregates the current selection. To reduce
visual clutter in the Camera Path View, we decided to omit labels
on the axes of the various displayed radar charts. Instead of repeat-
ing them for every chart, we depict the axis labels as a legend in the
top right corner of the screen (see Figure 3 above III).

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

H. Tarner, V. Bruder, S. Frey, T. Ertl & F. Beck / Visually Comparing Rendering Performance from Multiple Perspectives

VDB-VOLUME / SPIRAL-Z00M
Devices

« 0w

A X

Viewports clear

1024
2048
512

Facet used for coloring and comparison clear

CLUSTERING PANEL
or | Sync UM

Debug info

DaTA TABLE

La Ha
s:.v.s Seivis Seivis

Camera wnhom

Id Device Viewport Step

6 auD 02 o 58.712
Ryzer

58.5576 443412

5900X

8 AVD 512 222617
Ryzen

5900

7 AMD 2048 14.8661 14.9058 112551 112445
Ryzen
9
5900

ithout with with
Shidows Screenshot Shadows Screenshot Smadows Screenshot Shadows Screenshot

. =

Ottiilon Sereenshot Orelieion Screenshot Pathtracer Screenshot bathtracer Sereenshot

b n b = .

14,6661 13.3726 16201 1.4185
)

- B - = h = - = - = .

64177 5.6365

25.0808 220155

Yo

Figure 3: The Camera Path Explorer (see Section 4.2) comprises (I) a stylized two-dimensional version of the sampled camera path, (II)
Clustering Panel, (I11) Comparison Panel, (IV) Faceted Browsing Panel, and (V) the Data Table.

We use a force-directed layout to position the boxes along the
path. For this, we attach repelling forces to the boxes, the path sam-
pling points, and the origin point of the 2D projection. Attracting
forces are attached to the endpoint pairs of the leaders that connect
the boxes with the camera path. This layout method mostly avoids
overlapping of boxes with other boxes or path sampling points. But,
if necessary, the user can also hide (and show) individual boxes or
manually rearrange them via drag and drop. By zooming and pan-
ning, the analyst can enlarge specific regions of the projected cam-
era path and overlay boxes to inspect details of the data or images.

Clustering Panel To identify clusters and outliers according
(T3), the Clustering Panel (Figure 3 II) contains a scatterplot of
the data points, where data points of similar performance charac-
teristics across all rendering techniques are plotted in proximity. In
particular, we use UMAP [MHM 18] to project the multivariate data
points, which contain one performance measurement x, per tech-
nique p each (see Section 3), down to two dimensions. The pro-
jection is solely based on the performance measurements, and does
not take other factors (e.g., camera configurations ¢y) into account.

Comparison Panel Complementing the Clustering Panel re-
garding task T3, the Comparison Panel contains a correlation
matrix and a scatterplot with interactively selectable axes (Fig-
ure 3 III). The correlation matrix shows the Pearson correlation co-
efficient (PCC) for each pairwise combination of techniques. The
cells of the matrix are color-coded from red (PCC = —1) over white
(PCC = 0) to black (PCC = 1). Selecting a cell of the matrix up-
dates the axes of the scatterplot to visually inspect performance
differences between the pair of techniques. In the scatterplot, each

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

point represents one data point x,,. While points close to the diag-
onal reflect a balanced performance between the two techniques,
off-diagonal points indicate a better performance for one of them.
It can be discerned, for instance, if better performance relates to a
constant factor for all data points or varies for subsets.

Faceted Browsing Panel As discussed in Section 3, we consider
various parameters. While scene S, and camera path C;, are selected
in the Dataset Explorer, the camera configuration ¢; and render-
ing technique p have dedicated visualizations in the Camera Path
View. To also leverage the information about the hardware (h € H)
and the image’s output resolution (r € R), we introduce additional
sub-selection options in the Faceted Browsing Panel (Figure 3 IV).
Applying the concept of faceted browsing [YSLHO3], we interpret
hardware (“Device”) and resolution (“Viewports”) as facets. Se-
lecting one or more facet values filters the shown data. Selection
across different facets is treated as a logical AND. Further, a single
facet can be selected for further analysis. This will partition the data
points along this facet and create an additional line for each facet
value in the radar charts of the Camera Path View. Color is used
throughout the application to identify the facet values. These inter-
active selection options allow superimposed comparison of multi-
variate performance data and address tasks T1 and T4. They allow
investigating whether, for instance, different hardware setups influ-
ence the performance characteristics along the camera path.

Data Table The Data Table contains all currently selected data
points without any aggregation (Figure 3 V). Each table row repre-
sents one data point x,, with images i, as well as the camera con-
figuration ¢ (“Camera Step”), the used hardware 4 (“Device”), and

H. Tarner, V. Bruder, S. Frey, T. Ertl & F. Beck / Visually Comparing Rendering Performance from Multiple Perspectives

Table 1: Devices measured in the application examples: OSPRay
used CPUs (top) and the particle rendering GPUs (bottom).

Table 2: Techniques used in the OSPRay benchmark. LQ = Low
Quality, HQ = High Quality

Vendor Model Cores/SUs Architecture Name Parameter

AMD Ryzen 9 3900X 12 Zen 2 LQ SciVis with Shadows ambient occlusion samples: 1

AMD Ryzen 9 5900X 12 Zen 3 HQ SciVis with Shadows ambient occlusion samples: 5

Intel 2x Xeon E5-2630 v4 2x 10 Broadwell LQ SciVis without Shadows ambient occlusion samples: 1

Intel Core 17-8565U 4 Whiskey Lake HQ SciVis without Shadows ambient occlusion samples: 5

NVIDIA Quadro M6000 24GB 3072 Maxwell LQ Ambi'ent Occlusiion amb?em occlus?on samples: 1

NVIDIA GeForce GTX 1080 Ti 3584 Pascal HQ Ambient Occlusion ambient o.cclusmn samples: 5

NVIDIA TITAN X (Pascal) 3584 Pascal LQ Path Tracer ray recurs¥0n depth for Russ¥an roulette: 5
NVIDIA TITAN Xp 3840 Pascal HQ Path Tracer ray recursion depth for Russian roulette: 10
AMD Radeon RX 480 2304 GCN 4.0

AMD Radeon Vega Frontier Edition 4096 GCN 5.0

the output resolution r of the rendered image (‘“Viewport”); scene
s and camera path C are redundant for all data points in the screen
and hence not included. The Data Table contributes to task T1 and
T4 by contextualizing the performance measurements with the im-
ages as well as the rendering parameters and hardware setups.

5. Application Examples

We demonstrate our approach with two application examples from
scientific visualization. In Section 5.1, we investigate the perfor-
mance of rendering techniques in Intel OSPRay [WJA*16], a li-
brary for CPU-based ray tracing. For this, we measured the perfor-
mance of several CPUs by extending the benchmark capabilities of
OSPRay v2.4 for systematic sampling along camera paths. In Sec-
tion 5.2, we analyze particle visualization techniques using publicly
available performance data [BMFE19]. The measured devices are
summarized in Table 1.

5.1. OSPRay Volume Visualization

Intel OSPRay is an open source rendering library with high indus-
try adoption. It comes with three different renderers that support
different features and materials [Int21].

e The SciVis renderer is a fast ray tracer that supports multiple
light sources, ambient occlusion, and shadows.

e The Ambient Occlusion renderer is a simplified variant of the
SciVis renderer that does not consider light sources.

e The Path Tracer features indirect illumination, soft shadows,
and realistic materials.

We evaluated each of the three renderers with two different param-
eter configurations, which we refer to as high quality (HQ) and low
quality (LQ). For the SciVis and Ambient Occlusion renderer, we
change the amount of ambient occlusion samples. In case of the
Path Tracer, we vary the ray recursion depth for Russian roulette.
Also, in case of the SciVis renderer, we measured the two quality
variants with shadows enabled and disabled, respectively. Overall,
we ran eight different benchmark variants (Table 2) on four CPUs
(Table 1) using three different viewport resolutions (5122, 10242,
and 2048 pixels). We consider the render times of a generated
VDB volume dataset included in OSPRay for benchmarking. The
torus-shaped density values are generated using Perlin noise, the

transfer function maps them to color. For all techniques, a ground
plane is placed below the torus and a rectangular light source is
positioned above (see Figure 3 V).

We start our analysis by selecting the “spiral zoom” camera
path in the Dataset Explorer. The path is comprised of 1000 dif-
ferent camera configurations and follows an inward spiral towards
the dataset. Using the Camera Path Explorer, we first filter for the
5122 px resolution, to be able to better compare the devices’ per-
formance. After coloring by device, we investigate the UMAP plot.
All measurements from the Intel 17-8565U CPU form three clus-
ters. By nature, the notebook CPU performs slower than the others,
also showing a higher variance. Therefore, we deselect it, produc-
ing a division of the camera path into five larger sections (see Fig-
ure 4). The radar plots show an expected, decreasing performance
as the camera zooms in on the dataset along its path. Differences
between the techniques are particularly noticeable (the shape of the
radar plot changes, i.e., performance decreases distinctively for the
techniques) for the last section of the path where the camera views
the dataset from below the ground plane.

Next, we compare pairs of rendering techniques in the correla-
tion matrix of the Comparison Panel. Besides an expected low cor-
relation between the path tracing and the other techniques, a com-
parably low correlation between the SciVis renderer with and with-
out shadows enabled sticks out. The comparison plot shows a sim-
ilar, clear pattern for all three devices (Figure 5). While the twelve-
core AMD Ryzen 9 3900X slightly outperforms the dual socket In-
tel Xeon E5 with 20 cores (visible by the offset), the AMD Ryzen
9 5900X is clearly the fastest. Although featuring twelve cores as
the 3900X, the 5900X demonstrates its superior instructions per
cycle performance. We can roughly divide the comparison scatter-
plot into four regions A, B, C, and D (see Figure 5), that we brush
in each case, to investigate their respective locations on the camera
path. Region (A) includes camera positions below the ground plane,
where shadows are not visible, resulting in a similar performance
no matter if shadows are used or not. Region (B) mainly covers
view directions almost parallel to the ground plane; as less and less
of the plane becomes visible along the path, the performance of the
SciVis renderer with shadows enabled gets faster until no shadow
is visible. Similar cases can be found in region (C), where the cam-
era is zoomed out and larger parts of the ground plane get visible.
Region (D) shows a near linear correlation between the faster con-
figuration without shadows and the one with shadows enabled.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

H. Tarner, V. Bruder, S. Frey, T. Ertl & F. Beck / Visually Comparing Rendering Performance from Multiple Perspectives

Figure 4: A spiral path from the OSPRay example. The
performance-based segmentation of the path produces five larger
stretches.

200 -

150 -

100 -

HQ SciVis with shadows [fps]

50

HQ SciVis without shadows [fps]
50 100 150 200

Figure 5: Comparison of the SciVis renderer in OSPRay with and
without shadows enabled. We identified four regions (A-D) with
different performance characteristics.

The radar plots generally indicate a similar performance of the
LQ and the HQ variants of the SciVis renderer. This means raising
the ambient occlusion parameter seems to have little to no effect on
performance. The Comparison Panel confirms our hypothesis. Ap-
parently, the ambient occlusion parameter has no effect on volumes
when using the SciVis renderer (with our setup); there are also no
noticeable visual differences when comparing the images. How-
ever, for the Ambient Occlusion renderer, dark pixels can be seen
on the ground plane. We compare the SciVis renderer without us-
ing shadows against the Ambient Occlusion renderer, which is sup-
posed to be faster since it does not consider light sources [Int21].
However, the comparison plot shows a better performance of the
SciVis renderer across the board. Similar patterns are visible, but
not as pronounced: camera configurations below the ground plane

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

HQ Path LQ SciVis no HQ
Tracer SciVis no
shadows

LQ Path LQ SciVis
Tracer shadows
HQ

Ambient LQ Ambient HQ SciVis
Occlusion Occlusion shadows

Figure 6: Techniques show substantial performance differences for
a selected case of the streamline dataset.

perform even better with the SciVis renderer, while the fps-cap for
the close-up, side way perspectives (Figure 5B) is also visible.

To check if this is a general issue or limited to volume render-
ing, we switch to another dataset that contains generated stream-
lines. The streamline data also comes with OSPRay and consists
of 100 randomly generated line geometries, spiraling upwards with
changing radius of curvature. Figure 6 shows that, in the case of
ray tracing, the opaque streamline objects, the techniques show
substantially larger performance deviations compared to the vol-
ume dataset. The selected measurements from the Ryzen 9 3900X
with a viewport of 5122 pixels show a clear performance drop
when raising the number of ambient occlusion samples for both
the SciVis and the Ambient Occlusion renderers. Enabling shad-
ows also shows a noticeable impact, in particular for the LQ variant.
With the streamline data, the Ambient Occlusion renderer shows a
slightly better performance (around 5%) compared to the SciVis
renderer without shadows with HQ/LQ respectively. This aligns
with the OSPRay documentation, which attributes the SciVis ren-
derer a slower performance.

The runtimes of the Path Tracer are generally substantially
slower than those of the other two renderers (factor 10-15) but
hard to compare due to the differences in the approaches, espe-
cially for volume datasets. This is also reflected in the rendered im-
ages that clearly differ (see Figure 3 V). Selecting a single device
and all resolutions, and coloring the plots accordingly, we noticed
that performance seems to scale linearly with the viewport resolu-
tion throughout both datasets, i.e., quadrupling the pixel count from
5122 to 10242, and again from 1024 to 20482, typically results in
a quarter of the performance.

5.2. Particle Visualization

In the second application example, we examine publicly available
data from a recent particle rendering benchmark [BMFE19]. The
rendering of such particles, e.g., from molecular data, is typically
based on spherical glyphs. The benchmark contains different im-
plementations of this concept, and we perform a close comparison
between five techniques. They differ in the shader stages they use
to compute the sprites for the glyphs (vertex, geometry, or tessel-
lation shaders) and the form and alignment of the sprites with re-
spect to the camera (ray-aligned or screen-aligned). The benchmark
includes the systematic sampling of different parameter configura-
tions, most notably different camera paths. During our investiga-

H. Tarner, V. Bruder, S. Frey, T. Ertl & F. Beck / Visually Comparing Rendering Performance from Multiple Perspectives

Camera Steps: [3, 3]

0fps) /

Ray-aligned

el NVIDIA Quadro M6000 24 GB

0.875 Ray(;laullz%‘ed
Geometry

0735 0835

Instanced
Quad

S T T T T
100 200 300 400

Instanced quad

1.000

Ray-aligned polygon tesselation

Figure 7: Comparison of AMD Radeon Vega FE and NVIDIA
Quadro M6000. They show different performance characteristics
based on rendering technique and camera configuration. Particu-
larly, ray-aligned polygon tessellation and instanced quads differ.

tion, we take the following parameters into account: dataset, device
(i.e., GPUs listed in Table 1), viewport, and the camera setup. The
combination of those parameters results in 23 958 configurations.
We investigate the dataset of a simulation of a liquid layer forma-
tion comprising two million particles.

We start our analysis with the Dataset Explorer, investigating the
performance distributions across different camera paths by con-
trasting the radar plots. While many of the paths show a similar
pattern for the five techniques, paths along the y-axis (the longest
side of the bounding box) differ. To investigate this more closely,
we select the sinusoidal path along the y-axis for further analysis in
the Camera Path Explorer. A comparison of the radar charts for all
camera positions in the path indicates three regions with different
performance characteristics. One covers the first third of the path,
where particles are sparsely scattered across the space and the main
particle cluster creates a high frequency surface in the distance
(e.g., Figure 7). In the second region, the camera moves through the
main cluster, resulting in a viewport mostly filled by large spheres
(e.g., Figure 10), while in the third part, only few small and scat-
tered particles are rendered. Generally, the frame rates are high, and
we filter for the highest viewport resolution in our further analysis.

NVIDIA GeForce GTX 1080 Ti

NVIDIA TITAN X (Pascal)
NVIDIA TITAN Xp
AMD Radeon RX 480

AMD Radeon Vega Frontier Edition

- o @&
R°

57 o O,

Figure 8: Selecting a cluster in the Clustering Panel reveals per-
formance similarities for multiple samples. They share the same
viewport resolution, GPU architecture and camera positions inside
the bounding box with a similar pixel coverage.

6;%:9

Ray-aligned quad tesselation
f|
Ray-aligned Ray-aligned
polygon quad
tesselation o) geometry
G
éﬁ(’
A/
\ O

O
xJ

aligned quad

NVIDIA TITAN Xp

instanced
quad

NVIDIA GeForce GTX 1080 Ti

NVIDIA TITAN X (Pascal)

Figure 9: Performance comparison of all tested NVIDIA cards for
a selected camera configuration. The performance characteristics
are similar across all devices.

To investigate similarities between configurations, we check for
clusters in the Clustering Panel (Figure 8). Most clusters are group-
ings of values that either belong to a single GPU, a specific reso-
lution, or combinations thereof. One of the clusters is a group of
results from three NVIDIA GPUs with the same Pascal architec-
ture. A closer inspection of the values in the Data Table reveals that
the camera positions are located in the middle of the path, which
means inside the bounding box. With those configurations, all three
graphics cards produce similar fps values.

We then compare the radar charts for all GPUs along the selected
camera path further and spot some interesting characteristics in the
middle regions of the path. All NVIDIA GPUs show similar perfor-
mance characteristics—also across architectures (Figure 9). In di-
rect comparison to the NVIDIA Quadro M6000, the Radeon Vega
performs substantially better when using the “instanced quads” or
the “ray-aligned quad tessellation” methods for rendering (Fig-
ure 7). On the other hand, the Quadro M6000 outperforms the
AMD GPU when using “screen-aligned quads” or “ray-aligned
quad geometry”. Both cards exhibit similar performance when us-
ing ray-aligned polygons generated in the tessellation shader.

We notice a similar pattern at the next camera steps. The corre-
lation matrix shows a negative correlation for the ray-aligned poly-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

H. Tarner, V. Bruder, S. Frey, T. Ertl & F. Beck / Visually Comparing Rendering Performance from Multiple Perspectives

Figure 10: A red marker indicates a comparably low structural
similarity (SSIM) between the images, resulting from different clip-
ping approaches that are influenced by sprite shape and alignment.

gon tessellation and instanced quads (Figure 7). Selecting the value
shows a direct comparison between the two techniques. A horizon-
tal line of values stands out that have similar performance for poly-
gon tessellation, but not for the instanced quads. The coloring by
device makes it immediately clear that those belong to the Radeon
Vega GPU. The performance on this particular GPU in combination
with polygon tessellation seems to be bound at around 80 fps. This
effect can be seen across different camera configurations and view-
port resolutions. A similar effect, but for the NVIDIA M6000 GPU,
can be seen when comparing instanced quads against ray aligned
quad tessellation. We further notice a very low performance for
the screen-aligned quad technique, hinting at an issue or bottleneck
for this configuration. A comparison to other camera paths reveals
strong performance drops for the screen-aligned technique when-
ever the camera gets close to the spherical glyphs.

Comparing the images produced by the various techniques, red
indicators imply relatively low structural similarity (SSIM) of at
least a subset of the renderings. One of these cases stands (Fig-
ure 10) out in particular due to its low SSIM value. When compar-
ing these images, we immediately notice a substantial difference
using the screen-aligned quad technique compared to the others.
The sprite closest to the camera is (partly) clipped by all tech-
niques except the screen-aligned variant. Different clipping behav-
ior of the techniques may be a cause of performance differences in
this configuration. Regarding the performance drop of the screen-
aligned technique that can be observed in the renderings for the
cases where the camera is inside the bounding box, we suspect a
higher overdraw (i.e., overlapping sprites) for close spheres as one
of the reasons. Another cause for the performance decrease might
be that this method apparently generates sprites for back faces of
spheres, causing unnecessary draw calls.

6. Discussion and Future Work

We now discuss current limitations of our approach for visual per-
formance comparison and outline directions for future work.

Scalability As outlined in Section 3, the number of necessary
benchmark runs to capture the whole input parameter space ex-
plodes with increasing number of impact factors (curse of dimen-
sionality). In its current state, the visualization system scales for
an increased input parameter space by applying an adaptive sam-
pling algorithm to the camera path, as well as adding new facets
and value selectors to the faceted browsing panel. However, the
system does not scale well for an increased number of techniques.
As each technique is represented by one axis in the radar charts,

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

a larger number might result in cluttered charts. This issue could
be mitigated by letting the users select a subset of techniques to
analyze.

In Situ Evaluation The current system is used in a posteri-
ori scenarios: the camera path, and all performance measurements
have to be pre-recorded. A promising direction for future work is
an extension to capture performance data while the rendering ap-
plication is running and display radar charts for different render-
ing techniques in situ. For example, users could interactively se-
lect camera positions with uncharacteristic performance for further
analysis. Interactive selection of rendering techniques could also be
an extension: enabling or disabling additional rendering features,
loading different shader configurations, or even manipulating what
is shown on screen (number of objects, complexity of geometry,
etc.). However, it would be difficult to warrant a systematic sam-
pling in such scenarios, which could limit the comparability of ren-
dering techniques and might require different means of visualiza-
tion.

Code-Performance Comprehension As discussed in Sec-
tion 5.2, a direct linking between performance metrics, rendered
image, and the source code of the rendering technique helps to
understand deviations in rendering output and performance. With
an integration of the source code in an additional panel inside
the Camera Path Explorer, developers could inspect implementa-
tion details, while evaluating corresponding performance and ren-
der output. Furthermore, the system could show different versions
of the same rendering technique (instead of different techniques),
making the evolution of a technique visible while marking code
differences. Instead of radar charts, a timeline-based arrangement
of the performance metrics would clarify the temporal sequence.
These features could answer questions on the performance impact
of changes to the source code of the rendering technique and might
reveal performance regressions.

Applicability and Extensibility In this paper, we showed the
applicability of our approach to datasets from the scientific visual-
ization domain. Due to the close relation of scientific visualization
to computer graphics, we assume that our approach also works for
this domain. A possible extension would not only include fps val-
ues as a metric for comparison, but also other performance metrics
such as power or memory consumption. In addition to this, domain-
specific new facets could be introduced.

7. Conclusion

We introduced a novel visual analysis approach for analyzing and
comparing rendering performance of different techniques on a fine-
grained level in the context of the camera paths. It integrates and
tailors multivariate data visualizations optimized for visual com-
parison, collections of the rendered images, projections of the cam-
era paths and scene, and an adaptive sampling algorithm to select
camera positions of high importance with regard to performance
characteristics. We call the approach Multiple Perspectives as the
camera paths as well as the other rendering configurations and im-
ages provide different perspectives of the rich performance data,
which is otherwise aggregated to a level where important details
and specifics are obfuscated. In our application examples, we have

H. Tarner, V. Bruder, S. Frey, T. Ertl & F. Beck / Visually Comparing Rendering Performance from Multiple Perspectives

demonstrated that the approach helps in typical performance anal-
ysis and comparison tasks. For instance, clusters of camera con-
figurations that have special performance characteristics regarding
the compared techniques could be revealed, performance bottle-
necks for specific device—technique combinations could be uncov-
ered, and non-obvious impact of parameter changes could be iden-
tified. In general, we consider our approach as a step towards a
more detailed understanding of rendering performance character-
istics from (comprehensive) benchmarks, which in turn can con-
tribute to choosing suitable methods and developing more efficient
rendering techniques.

8. Acknowledgments

This work has been partly funded by Deutsche Forschungsgemein-
schaft (DFG) as part of research grant 288909335, as well as
within Project AO2 of the SFB/Transregio 161 (project number
251654672).

References

[AMD21] AMD. Radeon GPU Profiler. https : / / gpuopen . com/
rgp/. accessed March 30, 2021. 2021 2.

[BBRB12] BERGEL, ALEXANDRE, BANADOS, FELIPE, ROBBES, RO-
MAIN, and BINDER, WALTER. “Execution Profiling Blueprints”. Soft-
ware: Practice and Experience 42.9 (2012), 1165-1192. por: 10 .
1002/spe.1120 2.

[BFE17] BRUDER, VALENTIN, FREY, STEFFEN, and ERTL, THOMAS.
“Prediction-Based Load Balancing and Resolution Tuning for Interac-
tive Volume Raycasting”. Visual Informatics 1.2 (2017), 106-117. DOTI:
10.1016/j.visinf.2017.09.001 2.

[BH12] BETHEL, E WES and HOWISON, MARK. “Multi-core and Many-
core Shared-memory Parallel Raycasting Volume Rendering Optimiza-
tion and Tuning”. The International Journal of High Performance
Computing Applications 26.4 (2012), 399-412. por: 10 . 1177 /
1094342012440466 2.

[BLE*22] BRUDER, VALENTIN, LARSEN, MATTHEW, ERTL, THOMAS,
et al. “A Hybrid In Situ Approach for Cost Efficient Image Database
Generation”. IEEE Transactions on Visualization and Computer Graph-
ics (2022), 1-1. DO1: 10.1109/TVCG.2022.3169590 2.

[BMFE19] BRUDER, VALENTIN, MULLER, CHRISTOPH, FREY, STEF-
FEN, and ERTL, THOMAS. “On Evaluating Runtime Performance of
Interactive Visualizations”. IEEE Transactions on Visualization and
Computer Graphics 26.9 (2019). por: 10 . 1109 / TVCG . 2019 .
28984352,6,7.

[FSME14] FREY, STEFFEN, SADLO, FILIP, MA, KWAN-LIU, and ERTL,
THOMAS. “Interactive Progressive Visualization with Space-Time Error
Control”. IEEE Transactions on Visualization and Computer Graphics
20.12 (2014), 2397-2406. DOI: 10.1109/TVCG.2014.2346319 2.

[GAW*11] GLEICHER, MICHAEL, ALBERS, DANIELLE, WALKER,
RICK, et al. “Visual Comparison for Information Visualization”. In-
formation Visualization 10.4 (2011), 289-309. por: 10 . 1177 /
14738716114165492.

[GGA11] GuUO, SHENG, GERASIMOV, PHILIPP, and AONA, BONNIE.
“Practical Game Performance Analysis Using Intel Graphics Perfor-
mance Analyzers”. Intel Corporation White Paper (2011) 2.

[IGJ*14] IsAACS, KATHERINE E, GIMENEZ, ALFREDO, JUSUFI, ILIR, et
al. “State of the Art of Performance Visualization”. Proceedings of the
16th Eurographics Conference on Visualization. Eurographics Associa-
tion, 2014, 141-160. DOI: 10.2312/eurovisstar.20141177 2.

[IIC*13] ISENBERG, TOBIAS, ISENBERG, PETRA, CHEN, JIAN, et al.
“A Systematic Review on the Practice of Evaluating Visualization”.
IEEE Transactions on Visualization and Computer Graphics 19.12
(2013),2818-2827.DO1: 10.1109/TVCG.2013.126 2.

[Int21] INTEL. Ospray, the Open, Scalable, and Portable Ray Tracing En-
gine. https : //www . ospray . org/documentation . html.
accessed March 29, 2021. 2021 6, 7.

[KWN*14] KNOLL, AARON, WALD, INGO, NAVRATIL, PAUL, et al.
“RBF Volume Ray Casting on Multicore and Manycore CPUs”. Com-
puter Graphics Forum 33.3 (2014), 71-80. por: 10 . 1111 / cgf .
12363 2.

[LHK*16] LARSEN, MATTHEW, HARRISON, CYRUS, KRESS, JAMES, et
al. “Performance Modeling of In Situ Rendering”. Proceedings of the
28th International Conference for High Performance Computing, Net-
working, Storage, and Analysis. IEEE, 2016, 276-287. p01: 10.1109/
$C.2016.23 2.

[LIS21] L’Y1, SEHI, JO, JAEMIN, and SEO, JINWOOK. “Comparative
Layouts Revisited: Design Space, Guidelines, and Future Directions”.
IEEE Transactions on Visualization and Computer Graphics 27.2
(2021), 1525-1535. pOI1: 10.1109/TVCG.2020.3030419 2.

[MHM18] MCINNES, LELAND, HEALY, JOHN, and MELVILLE, JAMES.
“UMAP: Uniform Manifold Approximation and Projection for Dimen-
sion Reduction”. arXiv Preprint abs/1802.03426 (2018) 5.

[NVI21] NVIDIA. Visual Profiler. https://developer.nvidia.
com/nsight -visual - studio-edition. accessed March 30,
2021.2021 2.

[PDW*14] PocCO, J., DASGUPTA, A., WEL Y., et al. “SimilarityExplorer:
A Visual Inter-Comparison Tool for Multifaceted Climate Data”. Com-
puter Graphics Forum 33.3 (2014), 341-350. pO1: 10 . 1111 /cgf .
12390 2.

[PGFLO5] PINZGER, MARTIN, GALL, HARALD, FISCHER, MICHAEL,
and LANZA, MICHELE. “Visualizing Multiple Evolution Metrics”. Pro-
ceedings of the 2005 ACM Symposium on Software Visualization. ACM,
2005, 67-75.D01: 10.1145/1056018.1056027 2.

[SBB19] SANDOVAL ALCOCER, J. P., BECK, F., and BERGEL, A. “Per-
formance Evolution Matrix: Visualizing Performance Variations along
Software Versions”. Proceedings of the 7th IEEE Working Conference
on Software Visualization. 2019, 1-11. bol: 10 . 1109 /VISSOFT .
2019.00009 2.

[SH94] ScHMID, C. and HINTERBERGER, H. “Comparative Multivari-
ate Visualization Across Conceptually Different Graphic Displays”. Pro-
ceedings of the 7th International Working Conference on Scientific and
Statistical Database Management. IEEE, 1994, 42-51.D0OI1: 10.1109/
SSDM.1994.336963 2.

[SLB*11] SCHULZ, M., LEVINE, J. A., BREMER, P., et al. “Interpreting
Performance Data across Intuitive Domains”. Proceedings of the 40th
International Conference on Parallel Processing. 2011, 206-215. DOI:
10.1109/ICPP.2011.60 2.

[Sta21] STANDARD PERFORMANCE EVALUATION CORPORATION.
SPECviewperf. https : / / spec . org/ gwpg / gpc . static/
vp2020info.html. accessed November 30, 2021. 2021 2.

[TFPB18] TARNER, HAGEN, FRICK, VEIT, PINZGER, MARTIN, and
BECK, FABIAN. “Exploring Visual Comparison of Multivariate Runtime
Statistics”. Proceedings of the 9th Symposium on Software Performance.
Hildesheim, Germany, 2018 2.

[TFPB20] TARNER, HAGEN, FRICK, VEIT, PINZGER, MARTIN, and
BECK, FABIAN. “Visualizing Evolution and Performance Metrics on
Method Level As Multivariate Data”. Proceedings of the 13th Semi-
nar Series on Advanced Techniques & Tools for Software Evolution.
CEUR-WS.org, 2020. URL: http://ceur-ws.org/Vol-2754/
paperd.pdf 2.

[WBSS04] WANG, Z., BovVIK, A.C., SHEIKH, H.R., and SIMONCELLI,
E.P. “Image Quality Assessment: From Error Visibility to Structural
Similarity”. IEEE Transactions on Image Processing 13.4 (2004), 600—
612.D01: 10.1109/TIP.2003.819861 4.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://gpuopen.com/rgp/
https://gpuopen.com/rgp/
https://doi.org/10.1002/spe.1120
https://doi.org/10.1002/spe.1120
https://doi.org/10.1016/j.visinf.2017.09.001
https://doi.org/10.1177/1094342012440466
https://doi.org/10.1177/1094342012440466
https://doi.org/10.1109/TVCG.2022.3169590
https://doi.org/10.1109/TVCG.2019.2898435
https://doi.org/10.1109/TVCG.2019.2898435
https://doi.org/10.1109/TVCG.2014.2346319
https://doi.org/10.1177/1473871611416549
https://doi.org/10.1177/1473871611416549
https://doi.org/10.2312/eurovisstar.20141177
https://doi.org/10.1109/TVCG.2013.126
https://www.ospray.org/documentation.html
https://doi.org/10.1111/cgf.12363
https://doi.org/10.1111/cgf.12363
https://doi.org/10.1109/SC.2016.23
https://doi.org/10.1109/SC.2016.23
https://doi.org/10.1109/TVCG.2020.3030419
https://developer.nvidia.com/nsight-visual-studio-edition
https://developer.nvidia.com/nsight-visual-studio-edition
https://doi.org/10.1111/cgf.12390
https://doi.org/10.1111/cgf.12390
https://doi.org/10.1145/1056018.1056027
https://doi.org/10.1109/VISSOFT.2019.00009
https://doi.org/10.1109/VISSOFT.2019.00009
https://doi.org/10.1109/SSDM.1994.336963
https://doi.org/10.1109/SSDM.1994.336963
https://doi.org/10.1109/ICPP.2011.60
https://spec.org/gwpg/gpc.static/vp2020info.html
https://spec.org/gwpg/gpc.static/vp2020info.html
http://ceur-ws.org/Vol-2754/paper4.pdf
http://ceur-ws.org/Vol-2754/paper4.pdf
https://doi.org/10.1109/TIP.2003.819861

H. Tarner, V. Bruder, S. Frey, T. Ertl & F. Beck / Visually Comparing Rendering Performance from Multiple Perspectives

[WG11] WYLIE, BRIAN JN and GEIMER, MARKUS. “Large-scale Perfor-
mance Analysis of PFLOTRAN with Scalasca”. Proceedings of the 53rd
Cray User Group meeting. Vol. 9. 2011, 12 2.

[WJA*16] WALD, INGO, JOHNSON, GREGORY P, AMSTUTZ, JEFFER-
SON, et al. “OSPRay — a CPU Ray Tracing Framework for Scientific Vi-
sualization”. IEEE Transactions on Visualization and Computer Graph-
ics 23.1 (2016), 931-940. DO1: 10.1109/tvcg.2016.2599041 6.

[WKIJ*15] WALD, INGO, KNOLL, AARON, JOHNSON, GREGORY P., et al.
“CPU Ray Tracing Large Particle Data with Balanced P-k-d Trees”. Pro-
ceedings of the 2015 IEEE Scientific Visualization Conference. 2015, 57—
64.DOI: 10.1109/SciVis.2015.7429492 2.

[WYC17] WANG, JUNPENG, YANG, FEI, and CAO, YONG. “A Cache-
Friendly Sampling Strategy for Texture-Based Volume Rendering on
GPU”. Visual Informatics 1.2 (2017), 92-105. po1: 10 . 1016/ 7 .
visinf.2017.08.001 2.

[YSLHO3] YEE, KA-PING, SWEARINGEN, KIRSTEN, LI, KEVIN, and
HEARST, MARTI “Faceted Metadata for Image Search and Browsing”.
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2003, 401-408. DOI: 10.1145/642611.642681 5.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://doi.org/10.1109/tvcg.2016.2599041
https://doi.org/10.1109/SciVis.2015.7429492
https://doi.org/10.1016/j.visinf.2017.08.001
https://doi.org/10.1016/j.visinf.2017.08.001
https://doi.org/10.1145/642611.642681

