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Users specify sensor
poses virtually, ...

... which are
recorded from a
remote robot arm.

Figure 1: We enabled human assistance for scene reconstruction via the teleoperation of a static robot arm utilizing Virtual
Reality. Our approach visualizes the current scan process, enabling users to provide new sensor poses for the capture (left). The
robot executes the task (right), leading to an updated virtual representation.
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ABSTRACT
Detailed digital representations of physical scenes are key in many
cases, such as historical site preservation or hazardous area inspec-
tion. To automate the capturing process, robots or drones mounted
with sensors can algorithmically record the environment from dif-
ferent viewpoints. However, environmental complexities often lead
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to incomplete captures. We believe humans can support scene cap-
ture as their contextual understanding enables easy identification
of missing areas and recording errors. Therefore, they need to per-
ceive the recordings and suggest new sensor poses. In this work,
we compare two human-centric approaches in Virtual Reality for
scene reconstruction through the teleoperation of a remote robot
arm, i.e., directly providing sensor poses (direct method) or specify-
ing missing areas in the scans (indirect method). Our results show
that directly providing sensor poses leads to higher efficiency and
user experience. In future work, we aim to compare the quality of
human assistance to automatic approaches.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI).

KEYWORDS
RGBD sampling, manual sampling, teleoperation, human-robot
interaction, virtual reality
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1 INTRODUCTION
Virtual reconstructions of physical scenes have various use cases
ranging from robot training [19], telesurgery, or documentation of
archaeological excavation sites [6] and the surface of Mars [38]. A
sensor system mounted to a robot or drone is a common approach
to sampling its surroundings automatically [11, 30]. Scene recon-
struction hasmany challenges, which current automatic approaches
have not been able to solve entirely (i.e., scan completeness) [39, 45].
We hypothesize that humans can fill these gaps when quality is
more important than shorter reconstruction times.

The number of takes and the amount of energy during recording
can be a critical aspect. In telesurgery, where a remote surgeon
steers a robot operating on a patient, reconstructing the exact spot
of interest is crucial. While existing algorithms aim to mitigate
reconstruction issues by predicting required viewpoints, they often
overestimate their amount [35]. However, contrary to automatic
algorithms, human experts have a better contextual understanding.
Another example is archaeological excavation sites, where the high
quality of the artifact is more important than random objects in the
environment. Moreover, each take can decrease the robots’ overall
lifetime when robots are unreachable with a limited amount of
energy, like the Mars rover’s robotic arm [38], or environments
cause physical harm, like in nuclear reactors [5]. Humans intuitively
understand object appearance, usage, and the required task. In
environmental scans, they can assist in identifying and assessing
errors, like missing, discolored, or misplaced points [20].

In this work, we assess two human approaches for scene re-
construction in a teleoperation scenario. The first one focuses on

specifying sensor poses (direct method), with the second users can
indicate areas with missing information (indirect method). For both
approaches, humans need to understand the robot’s properties and
perception. We utilized Virtual Reality (VR) for our approach (out-
lined in the accompanying video figure), as it offers a natural view
and spatial adjustments in a three-dimensional (3D) space [41],
while enhancing environment [21] and data understanding [34].
We evaluate the methods in a user study (𝑁 = 16) by analyzing
scan completeness, efficiency, and user experience. It reveals that
both methods yield similar results for scan completeness. However,
the direct method significantly outperforms the indirect method in
processing time and user experience. Thus, specifying new sensor
poses directly is more suitable for remote user assistance in scene
reconstruction.

Contribution Statement. Our contribution is twofold. First,
we create and introduce an approach to enable human assis-
tance for scene reconstruction in VR, providing two inter-
action methods, the direct method and indirect method, for
specification. Second, we present insights into both human-
assisted interactionmethods by evaluating scan completeness,
efficiency, and user experience in a user study (𝑁 = 16).

2 RELATEDWORK
Following, we describe autonomous view planning, as the current
standard for scene reconstruction using robots. Since our work
follows a human-in-the-loop approach, we outline such works in
robotics utilizing Mixed Reality (MR).

2.1 Autonomous Scene Reconstruction Utilizing
Robots

In robotics, there are two approaches that are commonly used
to autonomously explore environments for scene reconstruction,
frontier-based or next-best view (NBV) basedmethods. Using frontier-
based approaches, robots navigate between explored and unex-
plored places in the environment [43], drawing maps for planning
the next movements [2, 3]. Contrasting, NBV approaches aim to
find the most efficient sequence of robot sensor viewpoints in the
environment before execution. They sample potential viewpoints
near the frontier of the explored environment or randomly and eval-
uating their potential information gain [45]. NBV approaches are
applied in various applications to scan objects [11, 16], and entire
environments for reconstruction, in indoor [22], and outdoor sce-
narios, with mobile robots [30, 40], or drones [4]. Newer approaches
apply machine learning for planning [26], or filling gap regions of
the received reconstructions [10]. However, selecting optimal sen-
sor poses remains challenging. We assume humans to benefit the
sampling with their knowledge of object appearance and existence,
particularly when familiar with the environment. Thus, we focus
on human-assisted sensor placement for scene reconstruction.

2.2 Human Assistance in Robotics Using Mixed
Reality

When domain knowledge is required for robot programming, po-
tentially leading to error-prone tasks and faulty robot execution
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when missing [44], approaches involving human assistants are
increasingly used. Including experts and non-professionals in com-
plex robot tasks can enrich the current processes and reduce the
overall complexity and entry barriers associated with robot pro-
gramming [44]. Conversely, robotic systems can learn from human
assistants [29]. To facilitate interaction with automatic systems, MR
systems display virtual information in a spatial representation. Aug-
mented Reality (AR) systems enhance the real world with virtual
information regarding the robot [37]. Related works displayed a
robot’s code, its virtual representation, detected objects, and move-
ment goals in the real-world [44], or enabled human assistants to
direct a robot by drawing paths or selecting waypoints for path-
planning [17]. VR was shown to actively engage users, offering
a more immersive experience that facilitates natural viewing and
seamless adjustment of the virtual reconstruction [21]. Using VR,
human users can remotely explore an environment by teleoperating
a mobile robot with RGBD cameras [33]. Its interactive, immersive
exploration induced a higher situational awareness and precise
navigation in challenging environments [33]. Next to 3D models re-
trieved from sensor data, MR approaches often include point clouds
directly [8, 9, 21, 31]. Utilizing point clouds, users could explore
recordings of a terrestrial environment from a remote mobile ro-
bot [8], or 3D reconstructions of rooms, including people, furniture,
and objects, obtained from depth sensors [31]. They have been
utilized for real-time collaboration, such as in virtual multi-user
holoconferencing systems to display remote participants [9]. Based
on these works, we choose VR as technology to enable remote
assistance for scene reconstruction to display real-world scans as
point clouds and the robot’s operational range, in our application.
Similarly to Krings et al. [17], we facilitate robot control, focusing
on sensor placement.

3 THE HUMAN GUIDANCE
Following, we present our approach for scan perception and propos-
ing new sensor poses for human assistants. Our video figure dis-
plays the application with the interaction methods in detail.

3.1 Approach
A robot placed in a new environment knows nothing about it. There-
fore, it needs to capture its environment. However, initial scans can
not capture an environment completely, as object occlusion leads
to artifacts and missing information. Thus, to complete an entire
recording, the robot needs to capture the unknown areas. Given
an initial incomplete scan, two elemental strategies exist to com-
plete it: One strategy is to specify optimal sensor poses covering
missing areas. The other strategy is to indicate areas with missing
information. We focus on these two strategies for interaction. The
sensor-focused approach requires users to provide the exact place-
ment location of a sensor. Thereby, users place the robot’s sensors
directly in the virtual environment and see by the frustum how
the missing space is covered (direct method). The indirect method
focuses on the missing area. Here, users provide information about
inadequate areas by creating a plane covering them. Subsequently,
a sensor pose recording the specified area is calculated.

3.2 Implementation
Following, we describe our implementation of the interaction meth-
ods and how we enabled teleoperation with a static robot arm. The
interaction methods are integrated into a VR application, visualiz-
ing the environment scan.

3.2.1 Data Acquisition Loop. Our application enables teleoperating
a static robot arm, a Panda from Franka Emika1 (see Figure 2), in
a geographically remote location. The arm, mounted on a table,
was equipped with an Intel RealSense D435 RGBD camera, and was
controlled using ROS1 andMoveIT. From the sensor’s RGBD images,
we generate a TSDF mesh of the scene with Open3D2 to calculate a
single point cloud. Combined with the robot’s operational area, the
point cloud is stored in a Collada file. Utilizing one input method,
users provide new sensor positions uploaded to the server in Collada
format. The robot takes new images when a new file with poses
is found. The process iterates until the human assistant confirms
scene completion.

3.2.2 VR Application. In VR, we visualize the point cloud on a
virtual table. Its height is derived from the vertical offset of the
robot arm. To represent the robot’s sensors, we use virtual cameras.
Their field of view (FoV) is indicated with rays. We display the
robot’s operational area as a blue cuboid if a pose is unreachable.
In such cases, the camera’s color changes to red to indicate the
inaccessibility. However, the robot unit might still not capture all
suggested poses. To communicate such errors, we visually represent
erroneous poses as static red cameras, requiring deletion before
sending new poses. This ensures human assistants recognize which
positions are infeasible.

3.2.3 Interaction Methods. The direct method (see Figure 2A) fa-
cilitates camera creation through a button press. Users can grab or
select a camera by casting a ray, which then allows them to adjust
its position and orientation. When positioned outside the robot’s
operational area, the camera changes its color to red to communi-
cate the pose is not feasible. Users can delete cameras by selecting
them and pressing the delete button.

The indirect method (see Figure 2B) enables users to indicate an
area for recording. To do so, users define the corners of the recording
plane by placing three spheres using a button on the right controller.
A fourth sphere appears, completing the rectangular plane. Users
can adjust it by interacting with the spheres. An arrow indicates
the sensor’s side, changeable by dragging it to the other side. When
users confirm the plane’s placement, a camera covering the plane
appears. It is colored red when outside the robot’s operational area
and can be deleted.

4 EVALUATION
We conducted a user study to investigate “which input method, the
direct method or indirect method, is most suitable for specifying
new sensor poses regarding the scene completeness, efficiency, and
user experience?” (RQ1).

1Franka Emika. https://www.franka.de/, last accessed: March 8, 2024
2Open3D. https://www.open3d.org/docs/release/tutorial/pipelines/rgbd_integration.
html, last accessed: March 8, 2024

https://www.franka.de/
https://www.open3d.org/docs/release/tutorial/pipelines/rgbd_integration.html
https://www.open3d.org/docs/release/tutorial/pipelines/rgbd_integration.html


CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA Liebers, et al.

Data Processing

RGBD-Image(s)

Robot Unit

TSDF Mesh

Point Cloud

Data Server

New Sensor Pose(s)Sensor Pose(s)

Direct Method Indirect MethodA B

Figure 2: A robot unit first executes an initial scan. The RGBD images are transformed into a mesh of the scene and, finally,
a point cloud. The cloud is uploaded to our server as a Collada file. Users either utilize the direct method (A) or the indirect
method (B) to suggest sensor poses. Upon receiving the poses, the robot makes new scans. The process iterates until the user
confirms completion.

4.1 Study Design
We conducted a controlled laboratory study with a within-subjects
design to compare the interaction methods in VR. Our independent
variables were the interaction methods with two levels: the direct
method and the indirect method. We employed a Latin square de-
sign, resulting in two configurations, whereas we used two different
scene compositions, similar to related studies [11, 16, 26], to prevent
recognition. We measured the dependent variables: task completion
time (TCT), camera poses, number of recordings, spawned cameras,
deleted cameras, user experience, workload, easiness of placement,
precision of placement, perception of recordings, scene control, scene
completeness, process engagement, perceived time, perceived efficiency,
and scene understanding. Table 1 lists details of the variables.We cap-
tured the participants’ interaction times and resulting point cloud
scans for later analysis [1]. Finally, we conducted semi-structured
interviews for qualitative feedback.

4.2 Procedure
Before starting the study, we introduced participants to the study
procedure and objectives. We addressed all open questions and
informed them about recording the TCT and final scan results, as
well as their right to withdraw without drawbacks. We conducted
the study after obtaining their written consent. We used the Meta
Quest 2 head-mounted display (HMD) as a device for VR and pre-
configured a virtual safety guard onto a 4.07𝑚 × 4.05𝑚 open space.
The experimenter monitored participants to ensure their safety.
First, participants entered a tutorial to familiarize themselves with
the interaction methods and recording process. Since the robot needs
approximately 1.5 minutes to take images, we offered a chair during
waiting times to ensure the participants’ comfort. Communication
between the study and remote robot location was established be-
fore participants entered the first study scene. For each interaction
method, their task was to perform a scene scan as complete as pos-
sible. Participants were not subjected to a time limit. They could
request the unlock of the Complete button to finish. After each
scene, they answered the NASA-Task Load Index (TLX), User Ex-
perience Questionnaire (UEQ), and additional Likert items. At the
end of both scenes, we conducted a semi-structured interview for

qualitative feedback. The study took approximately 60 minutes per
participant.

4.3 Participants
We recruited 16 volunteers (2 female, 14 male, 0 diverse), between
23 and 35 years (𝑀 = 28.69, 𝑆𝐷 = 3.36). Only 1 was left-handed. We
inquired participants about their experience with VR on a 6-point
Likert scale, corresponding to “I have never used VR before” (1), “I
used VR once” (2), “I use VR yearly” (3), “I use VRmonthly” (4), “I use
VR weekly” (5) and “I use VR every day” (6). They responded with
a medium value of 4.68 (𝐼𝑄𝑅 = 2) and considered their experience
with robots with amedium value of 3.19 (𝐼𝑄𝑅 = 2) on the same scale.
To ensure participants’ privacy, we only recorded pseudonymized
data. Our local ethics committee approved the study.

5 RESULTS
Following, we outline the results of the evaluation. We present the
quantitative data before reporting the subjective insights of our
participants’ feedback. Figure 3 displays our participant’s responses
regarding the input methods to the Likert items.

5.1 Quantitative Analysis
Our quantitative data includes measurements throughout the study
and participants’ ratings. We found that most of our data is not
normally distributed. Therefore, we applied non-parametric tests
and performed aWilcoxon Signed-rank test directly. We only report
the significant results listed as median (interquartile range).
Scan Completeness We compared the participant’s results to a
ground truth file, our best coverage of the scenes, with the Cham-
fer Distance (CD) and Earth Mover’s Distance (EMD) as the two
broadly utilized metrics to measure point cloud similarity [42].
The CD is 0.0053 (IQR=0.0014) for the direct method and 0.0053
(IQR=0.0018) for the indirect method, respectively. The EMD is
0.0101 (IQR=0.0032) for the direct method and 0.0109 (IQR=0.0109)
for the indirect method.
Task Completion Time (TCT) Our participants spent 225.06s
(IQR131.24s) in the direct method and 364.19s (IQR= 207.17s) in the
indirect method. We found a significant difference (𝑊 = 70.0, 𝑍 =

−2.19, 𝑝 < .05, 𝑟 = .39) between the methods. Thus, our participants
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Table 1: Variables and Their Measurement for Evaluating the Input Modalities.

Measurement Calculation Measurement 7-Point Likert Items

Task Completion Time Interaction time in seconds to complete
(TCT) the scene
Camera Poses Overall number of cameras placed
Number of Recordings Recording cycles in one session
Spawned Cameras Number of cameras spawned in one

session
Deleted Cameras Number of cameras deleted in a session
User Experience User Experience Questionnaire (UEQ)

Short [18, 36]
Task Load Index NASA-Task Load Index (TLX) [13]
Chamfer Distance (CD) Sum of the square distance of the scan

results to the ground truth
Earth Mover’s Distance Average distance between point pairs of
(EMD) the scan results to the ground truth

Easiness of Placement “It was very easy to place cameras in the scene.”
Precision of Placement “I was able to specify the camera position very”

“precisely.”
Perception of “The robot unit recordings matched my vision of the”
Recordings “scene very well.”
Scene Control “I had the impression of having complete control over”

“the recordings of the scene.”
Scene Completeness “I was able to achieve a complete portrayal of the scene.”
Process Engagement “I felt very engaged in the process of capturing the”

“scenes.”
Perceived Time “It took me not much time to complete the whole scene.”
Perceived Efficiency “I find this method of interaction to be very efficient.”
Scene Understanding “I had a very good understanding of the scene compo-”

“sition.”

needed more time in the indirect method to finalize a scene.
Spawned Cameras The number of spawned cameras were 16.0
(IQR=10.0) in the direct method and 25.5 (IQR= 19.5) in the indi-
rect method. We found a significant difference (𝑊 = 67.5, 𝑍 =

−2.29, 𝑝 =< .05, 𝑟 = .40) between the methods and can conclude
that more cameras were spawned in the indirect method.
DeletedCamerasThe number of deleted cameraswere 8.0 (IQR=5.25)
in the direct method and 20.5 (IQR=20.75) in the indirect method.We
found a significant difference between the methods (𝑊 = 42.5, 𝑍 =

−3.23, 𝑝 =< .001, 𝑟 = .58). Thus, more cameras were deleted in the
indirect method.
User ExperienceWe received a total score of 1.75 (IQR=1.06) for
the direct method and 0.63 (IQR=1.13) for the indirect method. A
comparison revealed a significant difference of the input methods
(𝑊 = 187.0, 𝑍 = 2.23, 𝑝 < .05, 𝑟 = .39). For the pragmatic scores, the
user experience was rated as 1.5 (IQR=1.25) for the direct method
and -0.75 (IQR=2.06) for the indirect method, revealing a significant
difference between the methods (𝑊 = 202.0, 𝑍 = 2.8, 𝑝 =< .01, 𝑟 =
.49). Thus, our participants perceived a higher user experience us-
ing the direct method overall and in the pragmatic scores.
Task Load Index We received an overall score of 53.5 (IQR=19.5)
for the direct method and 69.0 (IQR=20.0) for the indirect method
and found a significant difference (𝑊 = 64.5, 𝑍 = −2.39, 𝑝 < .05, 𝑟 =
.39). Further, the direct method was rated as 7.0 (IQR=8.0), the in-
direct method as 15.0 (IQR=4.0) for the mental demand, revealing
a significant difference (𝑊 = 55.0, 𝑍 = −2.76, 𝑝 < .01, 𝑟 = .49). For
the effort, we received 7.5 (IQR=5.5) for the direct method and 14.0
(IQR=6.75) for the indirect method and found significant difference
between both methods (𝑊 = 56.5, 𝑍 = −2.7, 𝑝 < .01, 𝑟 = .48). Using
the direct method, our participants perceived a lesser overall work-
load, mental demand, and effort.
Easiness of Placement Our participants rated the direct method
with 6.5 (IQR=1.0) and the indirect method with 3.0 (IQR=1.25). We
found a significant difference between the methods (𝑊 = 251.5, 𝑍 =

4.75, 𝑝 < .001, 𝑟 = .84). Therefore, the direct method was perceived
as easier for placing cameras.
Precision of Placement Our participants rated the direct method
with 6.5 (IQR=1.0) and the indirect method with 2.0 (IQR=1.25). We
found a significant difference between the methods (𝑊 = 229.0, 𝑍 =

3.89, 𝑝 < .001, 𝑟 = .69). Our participants perceived the camera place-
ment as more precise using the direct method.
Scene Control Our participants rated the direct method with 5.0
(IQR=1.25) and the indirect method with 3.0 (IQR=2.0). We found
a significant difference between the methods (𝑊 = 210.0, 𝑍 =

3.15, 𝑝 < .01, 𝑟 = .56). Thus, we can conclude that the participants
perceived a higher level of scene control when using the direct
method.
Perceived Time Our participants rated the direct method with 3.5
(IQR=3.0) and the indirect method with 2.0 (IQR=2.0). We found
a significant difference between the methods (𝑊 = 181.0, 𝑍 =

2.04, 𝑝 < .05, 𝑟 = .36). We can conclude that participants perceived
less time for the direct method.
Perceived Efficiency Our participants rated the direct method
with 5.0 (IQR=2.0) and the indirect method with 2.0 (IQR=1.25). We
found a significant difference between the methods (𝑊 = 228.0, 𝑍 =

3.82, 𝑝 < .001, 𝑟 = .68). We can conclude that participants perceived
the direct method as more efficient.

5.2 Qualitative Analysis
To analyze the interview data, we combined all answers and con-
ducted a thematic analysis after Clarke and Braun [7] by employing
open coding involving three researchers, all authors. First, we iden-
tified 509 atomic statements and coded them, resulting in 59 codes
before identifying 12 categories and 4 themes, using theMiroWhite-
board Tool.
EfficiencyMost participants (11) found the indirect method less
efficient for larger areas, requiring the creation of multiple small
planes, leading to an increased scan duration. They reported fre-
quent adjustments when cameras appeared outside the robot’s
range (P7). However, the indirect method was favored for its preci-
sion for small areas (6), benefiting understanding of the recording’s
coverage (P3). For the direct method, participants emphasized the
ease of camera pose adjustments (P17) and visually perceiving if
the camera is valid (P13).
Intuitivity and Usability The direct method was well-received
for its expectation-compliant behavior (14), often referred to as
similar to photography in the real world (P12) The participants
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Figure 3: Participant’s responses: Comparison between the direct method (right) and the indirect method (left).

encountered difficulties adjusting the camera’s distance and angle
in the indirect method, leading to frustration, when further limited
by the robot’s operating area (P11). These challenges required a
higher learning effort, reducing the created plane size throughout
the study.
Cognitive Effort Most participants (14) found the point cloud
representation effective. However, a few (3) observed a discrepancy
between the expected and actual scan results. Our participants
reported being unaware of the robot during execution. While P8
stated that not seeing the robot increased uncertainty, P14 found
the lack of information beneficial, allowing him to focus on the
input. Some (5) wished for a visual progress representation during
the robot execution.
Experiences and Improvement Suggestions Overall, our par-
ticipants described the application as engaging and enjoyable (13).
However, they sometimes (8) faced challenges covering all desired
points due to the operation area’s design (P2). Some suggested con-
tinuously visualizing (5) or providing a more precise operational
area (2) to ease the estimation of poses lying within the robot’s
reach. Moreover, some suggested live-steer the robot unit (5) to
enable direct control of its movements, avoiding invalid placements
and unnecessary recordings. To improve the indirect method, a
“best-fit” feature was suggested, recommending alternate camera
positions covering the specified area. Participants further suggested
a camera preview, facilitating immediate adjustments to align the
camera placement with their vision.

6 DISCUSSION
The direct method outperformed the indirect method Our
participants preferred the direct method of placing sensor poses
directly regarding workload (15.5% better as indirect method), per-
ceived efficiency (42.9%), easiness of placement (50%), precision of
placement (64.3%), and scene control (28.6%). Based on subjective
feedback, we infer the task load index disparity stems from estimat-
ing the final camera position in the indirect method, where users
specified areas to record, redundant in the direct method. While the
indirect method required participants to provide the coverage areas,
they were more focused on the final camera placement. Moreover,
the direct method was significantly faster and outperformed the
indirect method in efficiency. It showed higher user experience
in overall (18.7%) and pragmatic scores (37.5%) than the indirect
method. Potentially, this was influenced by a preference for familiar
experiences [21, 28], as real-life photography was named a familiar

analogy. We believe user experience is the key to the discrepancy
of the input methods in our participant’s ratings, as it encompasses
all interaction aspects [32].
The interaction method did not affect scan completeness Our
study revealed both input methods to receive similar scan coverage.
They received the same median values for the CD, only differing
in the IQR with a difference of 0.0004. The EMD differed by 0.0008
in the median and 0.0077 in the IQR. All favorable for the direct
method. Thus, both methods are applicable for scene reconstruc-
tion, resulting in similar scan coverage. We acknowledge that the
participants’ unfamiliarity with the study scenes may serve as con-
founding factors, potentially negatively impacting their results.
However, since the direct specification of sensor poses was found
more suitable regarding efficiency and user experience, we recom-
mend it for facilitating user assistance in scene reconstruction.
How to implement the direct method In our study, we used
a digital representation of a camera rather than a precise visual
of the robot’s sensor, assuming that their visuals aren’t essential
for accurate specification. We highlighted key features like cam-
era orientation and frustum, which participants found useful in
determining coverage. However, some participants noticed minor
discrepancies potentially arising from positional inaccuracies [15],
which might be communicated using uncertainty visualization.
We used VR controllers in our application to facilitate interaction.
When utilizing other input devices, we assume an influence on
the provided pose precision. For instance, hand interaction in VR
is less precise than controller [21, 25]. Furthermore, in our study
scenes incorporated everyday objects, aligning the participants’
reach almost identically with the robot’s operational area. In larger-
scale applications, such as drone surveillance over extensive areas
like mountain ranges or plantations, this methodology would need
adaptation to ensure the mapping of potential poses (direct method)
or the scans (indirect method) aligns with the participants’ reach.

7 OUTLOOK
As the indirect method performed worse than the direct method, it
could be enhanced to improve user assistance. Following feedback
from our study participants, these improvements could include
adding a preview feature and recommending multiple camera an-
gles or suitable poses close to the current estimated location.
By introducing these methods, we aim to enhance scene recon-
struction through human assistance. As our setup differs, we can
not compare our approaches directly to existing view-planning
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approaches. However, our results indicate a similar or increased
scan completeness [14, 23, 27]. Thus, we aim to extend our com-
parison to automatic approaches, like frontier-based [12, 24] or
NBV-based [45] approaches, in future work. We believe that involv-
ing humans can improve the quality of scans by leveraging their
expert knowledge [20]. However, there might also be situations
where automated methods perform better than human-assisted
ones or where the difference in performance does not justify the ex-
tra effort required. Therefore, we see a potential for future research
to identify for which use case each method performs best.

8 CONCLUSION
In this work, we compared two interaction methods in VR facil-
itating human assistance in the remote scene reconstruction via
teleoperating a robotic arm. Users either steered the robotic arm
by proposing new sensor poses directly or indicating areas with
missing information. Our user study (𝑁 = 16) revealed that directly
inserting sensor poses is more efficient and received higher user
experience. Both methods received similar values in scan complete-
ness, only yielding differences in the fourth decimal place measured
with the EMD. Thus, providing sensor poses directly is more suit-
able for human assistance in scene reconstruction. In future work,
we aim to compare this approach to the current automatic solutions
to provide insights into the quality of human assistance.
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