
Push Me: Investigating Perception of Nudge-based Human-Robot 
Interaction through Force and Torque Sensors 

Khaled Kassem 
khaled.k.kassem@tuwien.ac.at 

TU Wien 
Vienna, Austria 

Alia Saad 
alia.saad@uni-due.de 

University of Duisburg-Essen 
Essen, Germany 

Max Pascher 
max.pascher@udo.edu 

University of Duisburg-Essen 
Essen, Germany 

TU Dortmund University 
Dortmund, Germany 

Martin Schett 
e1633073@student.tuwien.ac.at 

TU Wien 
Vienna, Austria 

Florian Michahelles 
florian.michahelles@tuwien.ac.at 

TU Wien 
Vienna, Austria 

(a) Tap and nudge interactions. (b) The study setup. (c) Touchscreen mode, resembling touchscreen-based 
interaction of a teach pendant. 

Figure 1: We propose using direct nudges as an intuitive approach to guide a robotic arm to perform a sorting task (left). We 
compare our proposed approach to controlling the robotic arm with a smartphone (right), in terms of usability, user experience, 
and workload. 

ABSTRACT 
Robots are expected to be integrated into human workspaces, which 
makes the development of effective and intuitive interaction crucial. 
While vision- and speech-based robot interfaces have been well 
studied, direct physical interaction has been less explored. However, 
HCI research has shown that direct manipulation interfaces provide 
more intuitive and satisfying user experiences, compared to other 
interaction modes. This work examines how built-in force/torque 
sensors in robots can facilitate direct manipulation through nudge-
based interactions. We conducted a user study (𝑁 = 23) to compare 
this haptic approach with traditional touchscreen interfaces, fo-
cusing on workload, user experience, and usability. Our results 
show that haptic interactions are more engaging and intuitive but 
also more physically demanding compared to touchscreen interac-
tion. These findings have implications for the design of physical 
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human-robot interaction interfaces. Given the benefits of physical 
interaction highlighted in our study, we recommend that designers 
incorporate this interaction method for human-robot interaction, 
especially at close quarters. 
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1 INTRODUCTION 
Recent advances have enabled the mass production of collaborative 
robots (cobots), allowing them to enter households [33], health 
care [24], and industry [5, 14, 22]. Cobots operating near humans 
have smaller bodies and payloads and are equipped with sensors and 
safety features to reduce the risk of accidents and injuries [18, 22, 
25]. These sensors include force and torque (F/T) sensors, enabling 
intricate interactions like gesture recognition and biometrics [4, 26, 
29]. 

Traditionally, cobots were programmed through teach pendants 
or by demonstration, with programming remaining static for the 
task [22]. Teach pendants have limitations in intuitiveness and ease 
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of use [22, 40]. More intuitive interaction methods include embod-
ied physical interaction [3, 21, 27, 28], known from early Human-
Computer Interaction (HCI) research to be more intuitive [34, 35]. 
These Human-Robot Interaction (HRI) interfaces typically rely on 
external sensors to capture user input, such as cameras [27], wear-
ables [3, 37], or external F/T sensors [17]. Since modern cobots 
already have built-in F/T sensors, these sensors can turn the robot 
arm itself into an input device for haptic interaction. This approach 
enables designing intuitive direct manipulation interfaces while 
reducing system complexity by relying on fewer external sensors. 
However, the usability and User Experience (UX) of physically in-
teracting with a cobot through its built-in F/T sensors have not yet 
been fully studied. 

To address this gap, we created a proof-of-concept prototype 
where users can control a cobot’s behavior by direct nudges and 
taps. We conducted a controlled laboratory user study with 23 par-
ticipants to investigate the feasibility, usability, workload, and UX 
of this interaction method, compared to a more conventional way 
of control: a touchscreen interface resembling a teach pendant. Our 
findings show that haptic interactions using internal F/T sensors 
are usable, have a significantly higher hedonic and overall user 
experience, and are more intuitive and direct to use, but require 
significantly more physical effort. 

2 RELATED WORK 
Direct manipulation is a fundamental paradigm in HCI, introduced 
by Shneiderman [34], emphasizing visible objects and enabling 
rapid, reversible, and incremental actions. Building on this, Ishii 
and Ullmer coined "tangible computing" [15], integrating the phys-
ical environment to make digital interactions more intuitive. HRI 
research has focused on the embodiment of robots and intelligent 
agents [12, 20, 30], as well as tactile and embodied interaction 
with these agents [8, 20, 21, 38]. Studies have explored touch- and 
gesture-based interaction [4, 10, 21, 26–28] and haptic guided as-
sistance [23], typically relying on additional sensors or devices 
to capture human input and intent, such as Electroencephalogra-
phy [3], magnetic sensors [16], depth sensors [2], Microsoft Kinect 
[1, 13], RGB cameras [27], or force/torque (F/T) sensors [17]. Erden 
and Tomiyama [9] looked into technical implementation details not 
relying on F/T sensors. 

Recent sensor technology and robotics developments have en-
abled embedding F/T sensors directly in cobots. These sensors can 
enhance human-robot shared control [7] or infer human intent 
from gestures [4, 9]. Embedding F/T sensors in robots allows the 
robots to become input devices. However, cobot interaction and 
programming still primarily rely on touchscreen-based teach pen-
dants [22, 39]. Weiss et al. [40] and Michaelis et al. [22] examined 
teach pendants in HRI, particularly in industry, and recommended 
enabling more intuitive, direct, and physical HRI. Gleeson et al. [10] 
looked into the user impressions resulting from physical HRI, but 
did not evaluate workload and UX. 

Internal F/T sensors could transform the robot into an input 
device for haptic interaction. However, there is a notable gap in 
understanding the usability, user experience, and workload asso-
ciated with using a robotic arm as an input device have not been 

thoroughly investigated or compared to traditional interaction 
paradigms. Our work aims to address this research gap. 

3 USER STUDY 
In this work, we use the internal F/T sensors of a cobot to turn the 
robot into an input device for haptic HRI, where nudges and taps 
could be used to control the cobot. We compare our HRI interface 
with traditional touchscreen-based interfaces (i.e., teach pendants) 
in terms of usability, user experience, and perceived workload. We 
frame our research questions as follows: RQ1: To what extent is 
the built-in force/torque sensor of a collaborative robot usable as a 
user interface for haptic interactions? RQ2: How does sensor-based 
haptic input compare to traditional touchscreen control in terms of 
workload, user experience, and usability? 

We conducted a user study in a controlled laboratory setting, 
where participants supervised the cobot and intervened to correct 
the cobot’s actions if it made an error while sorting colored cubes 
into two different bins. The study setup is seen in figure 1b. We 
chose the method of input to the robot as the only independent 
variable. Input could be given in two ways each corresponding to 
one level of the independent variable: Haptic: interaction through 
tapping and directly nudging the robot end effector, and Digital: 
pressing buttons on a smartphone’s touchscreen, resembling a teach 
pendant. We followed a within-subject study design, where each 
participant experienced both conditions. We measured usability 
using the System Usability Scale (SUS) [6], user experience with the 
short User Experience Questionnaire (UEQ-S) [19], and perceived 
workload with the NASA Task Load Index (NASA-TLX) [11]. Per-
ceived safety was measured on a 7-point Likert scale from 1 “least 
safe", to 7 “most safe", and preferred mode was a choice between 
"haptic", "digital", or "both equally". 

3.1 Participants 
We recruited participants through student mailing lists and per-
sonal acquaintances. 23 participants volunteered for the study (self-
identified: male = 16, female = 6, transgender female = 1), with ages 
ranging between 21 and 29 years (M = 22.26, SD = 1.88). Four par-
ticipants reported previous experience with robots, such as playing 
chess with a robot hand, or doing training with a robotics research 
group. The rest of the participants did not report previous expe-
rience with robots. The study procedure was compliant with the 
university’s ethics guidelines. 

3.2 Study Procedure 
In the study, participants supervised a cobot sorting red and blue 
cubes into matching bins. Each trial involved supervising the robot 
as it processed ten cubes (five of each color), with a predetermined 
alternating sequence of colors. Participants knew the sequence 
and could distinguish the colors assigned to each bin. The robot 
was deliberately programmed to make mistakes 50% of the time, 
attempting to drop a blue cube in the red bin or vice versa, requiring 
participants to intervene and correct the robot’s actions for five 
cubes. The order of errors was randomized for each trial, preventing 
participants from predicting mistakes. Bins were placed on a table 
between the participants and the robot, marked with colored tape 
(blue bin on the left, red bin on the right) corresponding to the cube 
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colors (see figure 1b). The robot’s speed was deliberately slowed 
to allow participants sufficient time to see its trajectory and react. 
Participants could control the robot as follows: Haptic Control: A 
single tap issued the pause command. Pushing the robot arm left 
or right directed it to drop left or drop right. Digital Interaction: 
The touchscreen interface (see figure 1c) displayed three distinct 
buttons, each representing a command. 

Each participant signed an informed consent form and com-
pleted a preliminary questionnaire capturing age and self-identified 
gender (with the option to not disclose). They were then briefed 
on the study, the robot, the task, and both interaction methods. 
Participants practiced the interaction until comfortable with both 
modes. When ready, the main task began, as described earlier. The 
study comprised three runs of the main task: one for each interac-
tion method and a third where participants could choose or switch 
between methods at will. We recorded their choices for the third 
run. The order of the first two runs was counterbalanced (swapped 
for each successive participant). Participants were informed about 
each run’s permitted interaction method(s) beforehand. During the 
touchscreen run, participants could hold the device however they 
wanted and move freely around the room. The robot arm followed 
a set sequence to sort cubes: picking them up from the back of the 
table, moving to a neutral position between bins for participant 
commands, and then placing the cubes in the designated bin. 

Each run lasted about four minutes. After the first two runs, 
participants filled out a questionnaire about their experience with 
the interaction method they had just used. After the final run, 
they completed another questionnaire reflecting on their overall 
experience, impression of the robot, safety perceptions, preferred 
interaction mode, and their reasons for this preference. Participants 
could issue three commands to correct the robot’s errors: Pause, 
Drop left (drop the cube in the blue bin on the left), and Drop right 
(drop the cube in the red bin on the right). These commands could 
be combined freely once the robot moved within the participant’s 
reach until the robot dropped the cube. The study took an average 
of 35 minutes per participant. 

3.3 Apparatus 
The setup for the study (as seen in fig. 1b) consisted of the UR5e 
robot arm mounted on a table, with a Robotiq Hand-E gripper1 

attached to the end-effector, to which the haptic taps and nudges 
were applied. Touchscreen input was issued through a Samsung 
Galaxy J7 smartphone2 , wirelessly connected to the laptop com-
puter controlling the robot. The handling of F/T sensor data and 
the coordination of movements were managed by Robot Operating 
System (ROS), while the gripper was controlled directly via the 
network, without ROS. The robot operated on URSoftware 5.11.5, 
provided by the manufacturer. We detected taps and nudges by 
processing force sensor readings using a simplified variant of a 
z-score-based peak detection [36]. 

Incoming force readings were analyzed in two ways: first, for 
detecting a tap in any direction, and second, for detecting a hor-
izontal push (either left or right). Comparing these results was 

1https://robotiq.com/products/hand-e-adaptive-robot-gripper
2https://www.samsung.com/us/mobile/phones/all-other-phones/samsung-galaxy-
j7-16gb-unlocked-black-sm-j727uzkaxaa/ 

necessary to accurately identify the intended gesture. For example, 
the initial impulse of a push might also be detected as a tap. Taps 
and pushes were detected by comparing the force exerted on the 
robot’s end-effector to predetermined thresholds. If the force sur-
passed a threshold in either direction, an action was recognized. 
The algorithm employed for this purpose is a simplified variant of a 
z-score-based peak detection [36]. This approach considers a finite 
time-window average of prior readings when checking threshold 
crossings. This reduces the probability of false positives, e.g. the 
effect of the robot’s movements. 

4 QUANTITATIVE RESULTS 
The Shapiro-Wilk test revealed that normality could be assumed 
for the SUS and the UEQ-S, but not for NASA-TLX. Therefore, sig-
nificance testing was performed using the Student’s paired samples 
t-test for SUS and UEQ-S results. Data from the NASA-TLX was 
instead analyzed by pairwise comparison of participant rating of 
each of the six factors using the Wilcoxon Signed-rank test. We 
used a significance threshold of 𝛼 = 0.05. 

4.1 System Usability 
The paired samples t-test showed the difference in average score 
is statistically significant (t(22) = 3.112, p = .005). The effect size, 
measured by Cohen’s d, was 𝑑 = 0.649, indicating a medium effect 
(SE = 0.226). The touchscreen received a score of 87.717 SUS score, 
while the nudge input received 81.630. 

4.2 User Experience 
The paired sample t-test showed that the means are significantly 
different across the pragmatic, hedonic, and overall qualities. The 
results the following, with negative 𝑡 values indicating higher scores 
for haptic interaction, and effect size given using Cohen’s d: 

• Pragmatic Quality: 𝑡 (22) = 4.217, 𝑝 < .001. 𝑑 = 0.879, 
indicating a large effect (SE = 0.280). 

• Hedonic Quality: 𝑡 (22) = −6.875, 𝑝 < .001. 𝑑 = −1.434, 
indicating a very large effect (SE = 0.383). 

• Overall Quality: 𝑡 (22) = −4.407, 𝑝 < .001. 𝑑 = −0.919, 
indicating a large effect (SE = 0.305). 

4.3 Workload: 
Wilcoxon signed-rank test for pairwise comparison of NASA-TLX 
factors between touchscreen and haptic interaction showed the 
following results, with effect sizes for significant differences given 
using the rank-biserial correlation 𝑟 (negative z values indicate 
higher scores for haptic interaction): 

• Average Workload: 𝑊 = 27.500, 𝑧 = −3.214, 𝑝 = .001, 
𝑟 = −0.783 (SE = 0.239), indicating a large negative effect. 

• Mental Demand: 𝑊 = 32.500, 𝑧 = −0.909, 𝑝 = .364 
• Physical Demand: 𝑊 = 0.000, 𝑧 = −3.823, 𝑝 < .001, 𝑟 = 
−1.000 (SE = 0.256), indicating a large negative effect. 

• Temporal Demand: 𝑊 = 14.000, 𝑧 = −1.689, 𝑝 = .090 
• Performance: 𝑊 = 2.500, 𝑧 = −1.348, 𝑝 = .203 
• Effort: 𝑊 = 15.000, 𝑧 = −2.556, 𝑝 = .010, 𝑟 = −0.750 (SE = 
0.285), indicating a large negative effect. 

• Frustration: 𝑊 = 42.000, 𝑧 = −0.245, 𝑝 = .832 

https://robotiq.com/products/hand-e-adaptive-robot-gripper
https://www.samsung.com/us/mobile/phones/all-other-phones/samsung-galaxy-j7-16gb-unlocked-black-sm-j727uzkaxaa/
https://www.samsung.com/us/mobile/phones/all-other-phones/samsung-galaxy-j7-16gb-unlocked-black-sm-j727uzkaxaa/
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Table 1: Descriptive statistics for raw NASA-TLX ratings by the participants. Minimum and maximum values denote the lowest 
and highest ratings given by the participants for each category. 

Touchscreen 

Mean Std. Deviation IQR Minimum Maximum 

Mental 2.609 2.251 1.50 1 10 
Physical 1.174 0.388 0.00 1 2 
Temporal 1.739 1.356 1.00 1 7 

Performance 1.130 0.344 0.00 1 2 
Effort 1.739 0.964 1.00 1 4 

Frustration 2.478 2.609 1.00 1 12 

Average 1.812 1.086 0.67 1 5.333 

Haptic 

Mean Std. Deviation IQR Minimum Maximum 

2.870 2.074 2.00 1 8 
2.826 1.875 1.50 1 8 
2.174 1.370 2.00 1 6 
1.304 0.635 0.00 1 3 
2.870 2.160 2.00 1 9 
2.565 2.905 2.00 1 14 

2.435 1.417 1.25 1 6.333 

(a) 

(b) 

Figure 2: a) Average SUS score for each method of interaction. 
b) Average UEQ-S rating for each quality and overall value. 
A higher value signifies a better evaluation. Ratings > 0.8 are 
considered positive, ratings between 0.8 and -0.8 are consid-
ered neutral, and ratings < -0.8 are considered negative [32]. 

The physical demand and effort, as well as average workload are 
found to be significantly different. Visualizations can be seen in fig. 
3 and table summaries can be found in table 1. 

4.4 Preferred Mode and Perceived Safety 
Participants’ preferred mode of interaction was captured using a 
choice between haptic, digital, and “both about the same". Out of 
23 participants, nine preferred the haptic mode, nine preferred the 
digital mode, and five chose “both about the same". We also tallied 
the participants’ self-reported perception of safety during each of 
the first two trial runs on a 7-point Likert scale, with 1 being “least 
safe", and 7 being “most safe". One participant rated the safety of 
the digital interaction at 6, while the 22 other participants rated 
it as 7 (“most safe"), resulting in an average safety rating of 6.96. 
For haptic interaction, three participants rated the safety at 5, eight 
participants rated it at 6, and the remaining twelve rated it at 7. 
This resulted in a mean rating of 6.39. 

5 QUALITATIVE RESULTS 
At the end of the study, participants completed a concluding ques-
tionnaire with open-ended questions about their initial impression 
of the robot, their overall experience interacting with it, and their 
preferred method of interaction. Responses were segmented into 
distinct statements and analyzed using thematic analysis by three 
researchers, two of whom are authors. The analysis yielded two clus-
ters of themes: one focused on specific modes of interaction and the 
other on the overall experience with the robot. The cluster related 
to interaction modes consists of eight themes: Intuitiveness (ease 
of understanding the interaction method), Novelty (feeling new 
or unique), Physical ease (lack of physical strain), Interactivity 
(dynamic engagement), Proximity (physical distance), Consis-
tency (reliability over time), Responsiveness (quick reactions), 
and Safety (feeling free from threats or injury). 

For the haptic nudges, participants described it as a "natural way 
of interaction" and were "fascinated by the way the robot reacts 
to nudges." Participants remarked that nudging was "not tedious," 
while interactivity was praised for giving "instant feedback." Short 
distance interactions were preferred, with one comment stating, 
"hand interactions seem better for short distance." Consistency and 
responsiveness were positively noted: "The robot understood [the 
instructions] rather clearly" and "It reacted quickly." Safety was 
perceived positively because the robot was "slow and predictable." 

For the touchscreen mode, participants found it "very [conve-
nient] to use," likening it to their daily smartphone interactions. 
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Figure 3: Results of the mean NASA-TLX values for each factor. A lower value expresses lower task demand. 

Physical ease was highlighted as needing "less strength to direct 
the cobot," and interactivity was described as "more [convenient] to 
communicate." Remote capability was appreciated: "I can perform 
the action from everywhere and do not have to stand next to the ro-
bot to change the direction." Consistency and responsiveness were 
positively noted, with fewer control errors and quicker interactions. 

The overall experience themes reported by participants were 
categorized into three main themes: the robot being slow, the task 
being boring, and safety not being a concern. Participants found the 
robot "too slow to be used in a professional environment," the task 
"got a bit boring after the first few times," but felt "never insecure or 
anything similar" and could "easily trust the robot." A summarized 
list of participant comments can be found in the appendix. 

6 DISCUSSION 
Haptic Interactions for Cobots Are Usable and Enjoyable. Although 

the SUS usability scores were significantly different, both modes 
scored in the 90th percentile, considered excellent by Sauro [31]. 
This indicates the feasibility of haptic interactions, answering RQ1, 
and supports testing more complex gestures such as a handshake 
[29]. Simple gestures, e.g. tapping someone’s shoulder to get their 
attention, can be mimicked using internal F/T sensors, enabling 
social robots to respond to light touch. We propose that building 
on this capability, a robot that can sense light touch can be gentle, 
a quality that may increase acceptance and trust in settings such 
as healthcare. Designers of service robots in such settings can use 
this method’s usability to inform their designs. 

Direct Physical Interactions Are More Pleasant but Situationally 
Practical. UEQ-S results show that both modes received positive 
evaluations for pragmatic quality, with the touchscreen mode scor-
ing significantly higher. Participants commented on the straightfor-
wardness of touchscreen interactions; when the button is pressed, 
the robot reacts. The ubiquity of touchscreen devices (e.g., smart-
phones, tablets) normalizes this interaction. Some participants had 
difficulties with the haptic mode, as the robot occasionally failed to 
register inputs, especially during the pre-trial practice run. Despite 
this, the positive pragmatic evaluation of the haptic mode is promis-
ing. The hedonic quality ratings show a stronger difference, with 

the haptic mode receiving a higher rating. Participants described 
touchscreen control as "boring" and haptic control as "fun", sug-
gesting haptic interaction felt novel, while on-screen buttons were 
not exciting. The positive hedonic evaluation of haptic interaction 
is likely due to direct manipulation being more intuitive than the 
touchscreen interface, combined with the initial novelty of hap-
tic interaction, resulting in a better user experience. This aligns 
with previous findings [12] and answers RQ2. However, the situa-
tional usefulness of direct haptic input should be considered. Our 
study’s robot was slowed down, and the task was easy. In industrial 
settings demanding speed and efficiency, physical human-robot 
interaction would be impractical and unsafe. However, in contexts 
like domestic support, agriculture, or healthcare, where a helper 
robot moves slowly and operates near humans, physical interaction 
could guide the robot or serve as an additional modality. Participant 
comments suggest tactile interactions are more intuitive and feel 
more "natural". 

Physical Proximity and Task Load. NASA-TLX results show sta-
tistically significant differences in physical demand, effort, and 
overall workload. Touchscreen interaction scores lower in these 
categories, indicating better performance. The higher physical de-
mand and effort for the haptic method could be due to the need 
to physically reach out to give commands. Similar levels of per-
ceived performance and frustration suggest participants found the 
haptic method satisfactory, comparable to the touchscreen, despite 
needing to adjust to sensor sensitivity. Participants’ comments in-
dicated that the touchscreen mode was easier, requiring only finger 
movements rather than using the entire arm and less strength. This 
suggests the touchscreen mode’s advantage is its physical ease and 
remote usage capability, while haptic interaction was enjoyable 
with appreciated tactile feedback. However, the physical movement 
and effort required by haptic interaction are intrinsic to this input 
method. This has implications for haptic interface design; signifi-
cant physical effort could outweigh the benefits of intuitiveness and 
user experience (UX). Designers should ensure haptic interfaces are 
not overly tedious by avoiding reliance on elaborate movements. 
Usability and UX are also influenced by the compliance of robot 
joints and the effort required for haptic inputs. 
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Haptic Interactions Are Safe, With Precautions. The perceived 
safety results suggest that close interaction can reassure robotics 
novices when precautions like slowing down the robot and allow-
ing an adjustment period are taken, as seen in our pre-task trials. 
The even distribution in participant preference between the two 
interaction methods indicates that each had its benefits and down-
sides. Participant comments generally align with the quantitative 
results. Although the haptic trial was rated slightly lower in per-
ceived safety, this did not noticeably impact participants. Only one 
comment addressed safety, positively noting the robot’s safety dur-
ing the haptic trial. However, the robot’s speed was intentionally 
limited, and many participants found it slow, as their comments 
reflect. Thus, participants’ safety perceptions might change if the ro-
bot’s speed were increased. Safety ratings in high-speed industrial 
contexts are expected to differ significantly from slower, less time-
critical contexts like social and domestic settings. This suggests 
that users do not find physical interaction with a robot inherently 
dangerous. Designers should consider this for social use-cases; if 
the robot’s movements and speed are not inherently threatening, 
users are likely willing to interact physically with it. 

Limitations and Future Work. The participants were mostly com-
puter science students of similar ages and technical backgrounds. 
Future work should include more diverse participants from various 
demographics. To gauge participant reactions to proximity to a 
moving robot, we slowed down the movements of the prototype 
and chose a simple task with predictable straight-line trajectories. 
The results encourage further studies at higher speeds, with more 
complex tasks and gestures, such as rotational inputs, to further 
explore usability and user experience. We acknowledge the limited 
timespan of our study and the potential impact of novelty effects 
in evaluating haptic feedback. Future studies should involve partic-
ipants more experienced with robotics to eliminate confounding 
novelty effects. Future developments can focus on implementing 
a wider range of inputs and integrating haptic interaction with 
other modalities, such as speech. Subsequent work should explore 
the effect of higher robot speed on perceived safety and overall 
impressions in more use cases of physical interaction, allowing 
usability testing in tasks like object handover. 

7 CONCLUSION 
We examined the usability of a proof-of-concept HRI interface that 
uses the internal force/torque sensor of a cobot to enable direct 
physical interaction. The cobot itself becomes an input device for 
direct physical interaction by nudging and tapping. We compared 
the usability, user experience, and workload to those of a traditional 
touchscreen interface. Haptic interaction was perceived as more 
enjoyable and engaging, receiving a higher hedonic quality score. 
Participants highlighted a difference in physical effort between the 
touchscreen and haptic control modes, with nudges being perceived 
as more physically demanding. Overall evaluation suggested that 
haptic interactions are as viable as a touchscreen-based method to 
control the robot. The results show that both modes of interaction 
were evaluated positively in terms of pragmatic quality, with haptic 
interaction receiving a slightly lower rating. Participants did not 
perceive any inherent significant safety issues while physically 

interacting with the robot at an intentionally slow speed. Partici-
pants perceived haptic interaction to be an engaging alternative to 
traditional interfaces for controlling the robot. The results show 
that this interaction method is usable and that this direction offers 
a promising foundation for further research. We expect future work 
to further investigates the UX and perceived workload of this in-
teraction method with more complicated gestures in more specific 
contexts. 
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A SUMMARIES OF STATISTICAL TEST RESULTS 

Table 2: Student’s paired samples t-test comparing pragmatic, hedonic, and overall UEQ-S qualities. Negative values for 𝑡 signify 
haptic interaction scoring higher. 

Touchscreen vs. Haptic t df p 

Pragmatic Quality 4.217 22 < .001 
Hedonic Quality −6.875 22 < .001 
Overall −4.407 22 < .001 

Table 3: Wilcoxon signed-rank test for pairwise comparison of NASA-TLX factors. Negative values for 𝑧 signify haptic interaction 
scoring higher. 

Touchscreen vs. Haptic W z p 

Average workload 27.500 −3.214 0.001 

Mental Demand 32.500 −0.909 0.364 
Physical Demand 0.000 −3.823 < .001 
Temporal Demand 14.000 −1.689 0.090 
Performance 2.500 −1.348 0.203 
Effort 15.000 −2.556 0.010 
Frustration 42.000 −0.245 0.832 

B SUMMARIES OF RESPONSES TO OPEN-ENDED QUESTIONS 

Table 4: Qualitative comments about the overall experience. 

Theme n % Sample comments 
Slow 14 52% “The 

“It is 
“But 

robot moves 
to slow to be 
it was slower 

in areas where no interaction is plan 
used in a professional environment." 
than I expected." 

very slow." 

Boring Task 6 22% “However it 
“Personally, 

got a bit boring after the first few times." 
I would have a problem of focusing on the task for a longer time." 

Safety 7 26% “It seems to be very safe." 
“Never felt insecure or anything 
“[...] I can easily trust the robot." 

similar." 
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Table 5: Qualitative comments about the haptic nudges interaction method. 

Theme Sentiment n % Sample comments 
Intuitiveness Positive 10 17% “Natural way of interaction." 

“Tactile sense is enough to tell where the robot is without 
looking at it." 

Novelty Positive 6 10% “I’m fascinated by the way the robot reacts to nudges. "
“It was more exciting to interact directly with the robot." 

Physical ease Positive 1 2% “Not tedious." 
Negative 3 5% “I would like to spend less physical effort." 

“Need to move more and use physical action." 
Interactivity Positive 23 40% “It gives instant feedback." 

“Something to do with both hands and mind." 
Negative 2 3% “Felt odd sometimes." 

Proximity Positive 4 7% “Hand interactions seem better for short distance." 
“Preferred when the robot is close." 

Consistency Positive 4 7% “The robot understood [the instructions] rather clearly." 
Negative 3 5% “The sensors could be more sensitive." 

Responsiveness Positive 1 2% “It reacted quickly." 
Safety Positive 1 2% “Safe because slow and predictable." 

Table 6: Qualitative comments about the touchscreen mode. 

Theme Sentiment n % Sample comments 
Intuitiveness Positive 3 8% “It was very [convenient] to use, because interacting with a smartphone 

on daily basis helps." 
Novelty Positive 1 3% “During the digital use you [feel] like a scientist." 

Negative 5 14% “I am pretty sure that using the phone would get boring rather fast and 
thus, make one less attentive." 

“I think that using the [touchscreen] interaction takes away the collaborative 
aspect a bit." 

Physical ease Positive 9 24% “It needed less strength to direct the cobot." 
“It is easier to push a button than use muscle strength to redirect [the robot]." 

Negative 2 5% “With the [touchscreen] mode, I always had to move my head up and down, 
first to click the correct button, then to check if the robot had actually 
[received] the command and acted appropriately." 

Interactivity Positive 2 5% “[with the phone] it is more [convenient] to communicate." 
Negative 1 3% “It is possible to confuse the right and left button on a screen by a tall user." 

Proximity Positive 8 22% “You can do it [remotely]. "
“I can perform the action from everywhere and do not have to stand 

next to the robot to change the direction." 
Consistency Positive 2 5% “Control errors like stopping accidentally did not happen with the phone. "

Negative 1 3% “Sometimes the buttons on the [touchscreen] version would only 
register after a second tap though, which was a bit annoying." 

Responsiveness Positive 3 8% “The interaction was quicker. " 
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