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ABSTRACT
Since the release of the first activity tracker, there has been
a steady increase in the number of sensors embedded in
wearable devices and with it in the amount and diversity of
information that can be derived from these sensors. This de-
velopment leads to novel privacy threats for users. In a web
survey with 248 participants, we explored whether users’
willingness to share private data is dependent on how the
data is requested by an application. Specifically, requests
can be formulated as access to sensor data or as access to
information derived from the sensor data (e.g., accelerometer
vs. sleep quality). We show that non-expert users lack an
understanding of how the two representation levels relate to
each other. The results suggest that the willingness to share
sensor data over derived information is governed by whether
the derived information has positive or negative connota-
tions (e.g., training intensity vs. life expectancy). Using the
results of the survey, we derive implications for supporting
users in protecting their private data collected via wearable
sensors.
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1 INTRODUCTION
The diversity of commercially available mobile and wear-
able devices is constantly increasing. Often, these devices
contain a large number of integrated sensors, each special-
ized to extract a particular type of information about the
user and context. Eventually, this information is used for
a variety of applications such as sports trackers or quanti-
fied self applications. While most of the wearable devices are
wrist-worn, smart textiles are gaining importance and promi-
nence (e.g., Project Jacquard [9]). Given their close proximity
to users’ bodies, smart textiles allow for a more pervasive
assessment of physiological responses, such as breathing
rate or pulse [7, 13]. In other words, recent developments
allow for more personal data to be extracted, which has an
increasing potential to violate user-desired levels of personal
privacy.

Wearable technology poses an implicit contradiction that
users and designers have to resolve. On the one hand, users
are led to believe that it is desirable to track and share their
activities, for example in the case of motivational applica-
tions that are based on fitness trackers. On the other hand,
there are wide-spread concerns regarding privacy and data
security, resulting from functions such as GPS tracking via
mobile phones or the unobtrusive taking of pictures of pub-
lic spaces. Most recently, the controversial use of Google
Glasses in public spaces initiated a debate over the permis-
sible extent of data collected via wearables and resulted in
a blanket ban of Google Glasses from a number of public
locations [8]. While this particular discussion was centered
around the issue of non-consensual photography of others,
a new dimension of privacy threats results from user-based
information being extracted from wearable sensors. Addi-
tionally, users can be largely unaware that their private in-
formation are collected and tracked by devices they have
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acquired themselves [4]. Allowing users’ informed consents
on which data is collected and shared and with whom is a
central challenge that remains underexplored.
Thus far, related work has mainly focused on a generic

and easy to understand situation, in which users’ privacy is
threatened, namely the extraction of location information
from GPS sensors [16, 17]. In contrast, wearable sensors pose
novel and multi-faceted challenges. Here, the recognition of
possible threats to privacy requires the user to understand
the potential violations that can result from the information
extracted from the sensor data. Almuhimedi et al. show that
raising the awareness of data access of mobile applications
could lead participants to reconsider their previous willing-
ness to share information with applications [1]. Even putting
the potential privacy threats more into the focus when in-
stalling mobile applications affects the user‘s decision on
installing applications which potentially share private in-
formation [5]. However, it remains unclear how well users
understand potential privacy risks by allowing access to
specific sensors.
We explore users’ understanding regarding which infor-

mation can be derived fromwearable sensor data. For this, we
conducted an online survey that assessed users’ willingness
to share their data when the data was requested either at the
sensor level (e.g., accelerometer) or at the level of information
that can be derived from the sensor data (e.g., step count).
Henceforth, we will refer to these two different levels as the
representation levels of users’ private data. We show that the
willingness to share information varies as a function of the
representation level – sensor data vs. derived information.
In addition, we find that the type of the derived information
influences users’ willingness to share. Users seem to prefer
sharing information with positive connotations (e.g., step
count) compared to information with negative connotations
(e.g., stress).

2 REPRESENTATION LEVELS
We first performed a literature review on wearable sensors
and the information that could be derived from them. We
thereby reviewed different devices commonly used in the
literature and available in the market that can be placed at
different parts of the user‘s body (e.g., wrist-worn fitness
trackers, heart-rate sensors at the chest) [14]. Next, we con-
ducted a non-exhaustive literature survey on information
that can be extracted from these sensors. We looked into
different domains (e.g., sport, physiology, medicine) that uti-
lize sensor data to gain insights into human behavior and
cognition. We picked ten types of derived information that
provide insights we believed users can understand but not
necessarily relate directly to the sensor used in each study.
The sensors and the information derived from them will be
described in the following.

The accelerometer is one of the most common sensors
found in wearable devices. Usually, data from wrist-worn ac-
celerometer are used to derive information on step count [11]
and the amount of active minutes [3]. Besides this, sleep qual-
ity [2], coarse location [20], and the type of activity [10] can
also be inferred from accelerometer data. The heart rate sen-
sor plays an important role with respect to the user’s health
status [15] and life expectancy [21]. The level of skin conduc-
tance, as measured by the SCA sensor, is determined by the
activity of a human’s sweat glands. Therefore, this sensor
provides information about the user’s stress level [18]. For
monitoring training intensity, measurements from the skin
temperature sensor can be used [12]. The light sensor provides
information about ambient brightness and can, therefore, in-
dicate the amount of sunlight that the user is exposed to [6].

3 TARGET AUDIENCE
We identified four different target audiences for information
sharing ranging from everybody over a theme-based commu-
nity (e.g., a sports group) and a certain person (e.g., a close
friend) to no one. Even though there may be further target au-
diences, we believe that these groups allow a sufficiently fine
grained assessment of the willingness to share information.

4 SURVEY ON SHARING BEHAVIOR
To assess users’ willingness to share information from wear-
ables, we conducted an online survey. We were particularly
interested in the effect that the representation levels as well
as the different target audiences might have on participants’
willingness to share sensor information. To this end, we
presented participants with 15 different statements, each ad-
dressing the participants’ willingness to share a certain type
of information (i.e., one of the five types of sensor data or the
ten types of derived information). The presentation order of
these statements was randomized between participants. Each
statement was further subdivided into four simultaneously
presented variations – one for each target audience (e.g., “I
would share the accelerometer data with a theme-based com-
munity.”). Participants rated their agreement with each of
the four variations on a 7-point Likert item (1 = “totally dis-
agree”; 7 = “totally agree”). We provided brief explanations
for the sensor type statements to ensure that the participants
were able to understand what each sensor measures (e.g.,
“An accelerometer is a device that measures the acceleration
in three axes (top/down, front/back, left/right).”) In addition,
we collected information about participants’ demographic
background such as age, gender, and occupation and asked
them to rate their self-perceived expertise with regards to
wearable devices.
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Figure 1: The mean values for each data presentation aver-
aged across the four target audiences. The error bars show
the standard error.

Value Proposition
To illustrate why and when users would have to share pri-
vate data, we provided a hypothetical scenario that involved
the acquisition of a new wearable device. Setting up this
device involved the installation of an application on users’
mobile phones. Subsequently, users were asked to grant the
application access to their personal data for the purpose of
sharing. We presented this scenario at the beginning of the
questionnaire and thus it applied to each of the 15 statements.

Participants
We invited the participants via various channels to attract
a diverse set of participants including University‘s mailing
lists, social media, fitness groups, and sport clubs. Overall,
249 participants (127 male, 115 female, 7 did not specify) com-
pleted the questionnaires. Their mean age was 34.3 years
(SD = 12.2). Our participants had diverse backgrounds that
included: computer science (20%), natural science (12%), com-
mercial occupations (31%), social science (7%), craft industry
(7%) and not specified (23%). Before analyzing the data, we ex-
cluded any participants whose survey completion time was
more than one standard deviation below the group mean
(M = 10.15 minutes, SD = 6.39 minutes). This criterion ap-
plied to four datasets. One more dataset was excluded since
completion took longer than one hour.

5 RESULTS
For all subsequent analyses, the polarity of the Likert item
for the target audience no one was inverted to correspond to
the polarities of the Likert items for the other three target au-
diences (i.e., stronger agreement equals higher willingness).
To analyze the Likert item data, we applied the Aligned

Rank Transform (ART) procedure [19] to our data before
performing analyses of variance with the within-subject

factors representation level (2 levels: sensor data vs. derived
information), target group (4 levels), and the between-subject
factor self-rated expertise (7 levels: 1 = low expertise, 7 = high
expertise). Significant effects were explored in more detail
using post-hoc pair-wise comparisons of least square means
with Bonferroni corrections. In the following, we report all
significant effects of interest.

Figure 2 (left) shows average ratings for questions regard-
ing sensor data and derived information as a function of target
group. Our analysis revealed a main effect for the two factors
representation level (F (1, 242) = 39.3, p < .001, η2 = 0.003)
and target group F (3, 726) = 183.2, p < .001, η2 = 0.22). With
regard to representation level, participants are less willing to
share sensor data as compared to derived information (arith-
metic means:M = 3.13, SD = 2.49 andM = 3.30, SD = 2.54,
respectively; p < .001). With regard to target group, we
find that willingness to share decreased with increasing size
of the target group (all pair-wise comparisons between the
four target groups were significant with p < .001). We also
find an interaction between representation level and target
group (F (3, 726) = 31.2, p < .001, η2 = 0.003). Specifically,
participants indicated a higher preference to share derived
information compared to sensor data for smaller audiences,
as is evident from Figure 2 (left). The difference between
derived and sensor data is larger for target groups no one,
person, and community as compared to all, and also larger
for person compared to community (all p < .001).
Next, we investigated whether self-rated expertise influ-

ences the willingness to share. The number of participants
falling into each level of expertise was approximately uni-
form across the seven levels (M = 35.6 participants per level,
SD = 4.8). Expertise was moderately correlated with the
ownership of a wearable (point-biserial correlation, r = 0.36,
p < .001). Figure 2 (right) shows participants’ ratings for sen-
sor and derived data as a function of expertise. The analysis
revealed a main effect for expertise (F (6, 242) = 5.7, p < .001,
η2 = 0.08) as well as a 2-way interaction between expertise
and representation level (F (6, 242) = 4.4, p < .001, η2 =
0.002) and a 3-way interaction (F (18, 726) = 6.4, p < .001, η2
= 0.004). Specifically, participants with low and medium ex-
pertise (levels 1 to 5) discriminatedmore between sensor data
and derived information and were less willing to share their
data. There was no significant interaction between expertise
and target group (F (18, 726) = 1.2, p = .22).

We also conducted a control analysis, where we added the
demographic variables gender and age (separated at themean
age into two groups – younger vs. older users) as factors
into the multifactorial design. While these two variables do
not change the overall conclusions, we find an influence of
both variables on willingness to share. Women are generally
more willing to share than men (arithmetic means: M =
4.11, SD = 2.2 vs. M = 3.82, SD = 1.98; F (1, 215.5) = 12.7,
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Representation Level Target Group Self-Rated Expertise

Sensor M (SD) Information M (SD) F p η2 F p η2 F p η2

Accelerometer 3.38 (2.52) Active Minutes 3.63 (2.56) F(1,242)=13.558 <.001∗ .004 F(3,726)=115.794 <.001∗ .146 F(6,242)=5.835 <.001∗ .067
Accelerometer 3.38 (2.52) Activity 3.39 (2.56) F(1,242)= 0.059 .809 <.001 F(3,726)=120.931 <.001∗ .145 F(6,242)=7.753 <.001∗ .086
Accelerometer 3.38 (2.52) Location 3.16 (2.46) F(1,242)= 5.230 .023∗ .002 F(3,726)=152.771 <.001∗ .174 F(6,242)=4.262 <.001∗ .042
Accelerometer 3.38 (2.52) Sleep Quality 3.12 (2.50) F(1,242)=10.648 .001∗ .004 F(3,726)=126.887 <.001∗ .146 F(6,242)=5.957 <.001∗ .066
Accelerometer 3.38 (2.52) Step Count 4.00 (2.59) F(1,242)=49.617 <.001∗ .019 F(3,726)=123.896 <.001∗ .153 F(6,242)=8.211 <.001∗ .088
Heart Rate Sensor 3.22 (2.53) Health Status 2.92 (2.45) F(1,242)=15.535 <.001∗ .004 F(3,726)=130.879 <.001∗ .158 F(6,242)=3.808 .001∗ .042
Heart Rate Sensor 3.22 (2.53) Life Expectation 2.70 (2.37) F(1,242)=45.288 <.001∗ .016 F(3,726)=128.263 <.001∗ .143 F(6,242)=3.515 .002∗ .038
Light Sensor 3.11 (2.47) Sunlight Exposure 3.34 (2.54) F(1,242)= 6.127 .014∗ .002 F(3,726)= 96.479 <.001∗ .108 F(6,242)=5.562 <.001∗ .065
SCA Sensor 2.95 (2.45) Stress Sensor 2.95 (2.48) F(1,242)= 0.280 .597 <.001 F(3,726)=135.241 <.001∗ .146 F(6,242)=4.071 <.001∗ .048
Temperature Sensor 3.01 (2.47) Training Intensity 3.81 (2.55) F(1,242)=73.019 <.001∗ .036 F(3,726)=150.792 <.001∗ .168 F(6,242)=5.447 <.001∗ .056

Table 1: The main effects of the analyses of variance on the aligned and ranked data (ART procedure) with the within-subject
factors representation level (2 levels: sensor data vs. derived information), target group (4 levels), and the between-subject
factor self-rated expertise (7 levels). Statistically significant comparisons are marked with * (p<.05). Note that η2 values are
affected by the ART and, thus, cannot be interpreted as usual.
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Figure 2: Arithmetic means for sensor data and derived information as a function of target group (left) and as a function of
users’ self-rated expertise (right). The error bars show the standard error of the mean.

p < .001) and older users are more willing to share than
younger users (M = 3.98, SD = 2.24 vs.M = 3.82, SD = 1.98;
F (1, 214.9) = 4.8, p < .03). We hypothesized that this may be
related to (self-rated) expertise. However, we find that women
do not rate themselves higher in this regard nor do older
participants (one-sided Wilcoxon rank-sum tests; gender:
z = 1.16, p = .12; age: z = 0.03, p = 0.51).

To explore our findings regarding representation level in
more detail, we conducted ten additional analyses, one for
each type of sensor and each type of information derived
from that sensor (e.g., accelerometer vs. sleep quality). To
retain comparability to the previous analysis, we again used
the Aligned Rank Transform procedure with the three fac-
tors representation level, target group, and self-rated expertise.
The main effects are available in Table 1. However, in the fol-
lowing, we will concentrate on the analysis of representation
level results. Eight of the comparisons result in a statistically
significant main effect for representation level. In half of
these cases, participants indicated a higher willingness to

share derived information. Specifically, this is the case for
number of active minutes, step count, sun light exposure, and
training intensity. In the other half of cases, participants indi-
cated a higher willingness to share sensor data. This was so
for location, sleep quality, health status, and life expectation.
To paraphrase these results, participants show some lack of
awareness that this information can be directly derived from
the sensor data. Further, they exhibit differential preferences
for or against sharing depending on the particular set of data.

6 DISCUSSION
Sensor Data vs. Derived Information: The results of our
online survey demonstrate that users’ understanding of the
relationship between sensor data and the information de-
rived from these data is still limited. Primarily, users were
not consistent in their willingness to share their sensor data
and the information derived from this data in a way that
could be explained by privacy concerns. This is in line with
the work of Tang et al. [16].

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 523 Page 4



If users were purely concerned with data privacy, they
should always demonstrate greater willingness to share de-
rived information rather than sensor data since each type
of derived information makes use of only a subset of the
available sensor data. In other words, since several different
types of information can be derived from a single sensor (e.g.,
active minutes & step count from accelerometer), the overall
amount of disclosed data is less with derived information.
Upon closer inspection of the data, we found that this

preference is not uniform across different types of informa-
tion. One possible reason for the increased willingness to
share derived information is the connotation linked to the
information. On the one hand, participants’ willingness to
share information with positive connotations was higher
than their willingness to share the associated sensor data.
This includes mainly information related to sport and fitness
(active minutes, step count, and training intensity) and sun-
light exposure. These information have connotations such as
being athletic, competitive, or disciplined. Even when actual
physical performance is not extraordinary, the sharing of
such information can communicate a willingness for self-
improvement (e.g., increased fitness, weight loss, etc.) and
will generally be met with support and approval by the target
audience. In short, there are usually no negative repercus-
sions to sharing this information.

On the other hand, their willingness to share information
with negative connotations was lower than their willingness
to share the associated sensor data. This mainly includes
health related information (sleep quality, health status, and
life expectation) as well as the user‘s location. One reason
could be that this type of information can have negative
consequences, such as disclosing poor health to an employer
or one’s whereabouts to an unknowing spouse.

User Expertise: The expertise of the user influences
their willingness to share. Particularly users with low and
medium self-rated expertise were less willing to share. They
also showed a larger difference between the willingness to
share sensor data and derived information. This indicates
that these users were not entirely certain about potential
privacy implications when sharing sensor data. Thus, they
acted more conservative.

Target Groups: The participants of the online survey
showed the highest preference for sharing their data with
single persons and lowest preference for sharing with the
general public. Thus, our results indicate that users are com-
fortable with sharing their sensor and information data as
long as they retain some control over whom they are sharing
this information with. This is also reflected by the fact that
users tend to equally dislike sharing sensor data and derived
information to the general public (i.e., all).

7 IMPLICATIONS
Request Data Access on Information Level: While cur-
rent systems often request access at a sensor level, the user
may not be aware of the full extent of the information that
can be derived from these wearable sensors. Our results sug-
gest that, in the future, data should be requested at the level
of derived information instead of at a sensor level. This ap-
proach respects the users’ desire for information privacy and
allows them to gain control over the nature of information
being shared.

Allow Fine Grained Selection of Permissions: Our
results suggest that users make distinctions regarding how
they value the privacy of specific information. For our par-
ticular sample of types of derived information, we found
information with positive connotations (e.g., training inten-
sity) wasmore likely to be shared as compared to information
with negative connotations (e.g., stress). Regarding potential
permission systems for sensors, this implies that users should
be presented with a larger number of derived information
requests, which users can individually allow or deny.

8 CONCLUSION
In this work, we investigated users’ willingness to share sen-
sor data and the information derived from these data. We
report two major findings. First, users show differential pref-
erences concerning the sharing of raw sensor data and the
information that is derived from these data. The results sug-
gest that this reflects a lack of understanding regarding the
relationship between both representation levels. In particular,
users do not seem to be fully aware of the type of information
that can be derived from different sensors. Second, the will-
ingness to share varies according to potential connotations
of the data. Users are more willing to share information with
positive compared to negative connotations.

REFERENCES
[1] Hazim Almuhimedi, Florian Schaub, Norman Sadeh, Idris Adjerid,

Alessandro Acquisti, Joshua Gluck, Lorrie Faith Cranor, and Yuvraj
Agarwal. 2015. Your Location Has Been Shared 5,398 Times!: A Field
Study on Mobile App Privacy Nudging. In Proc. CHI. ACM, 787–796.

[2] Jiang Chuan, Zhang Sheng, and Lin Xiaokang. 2014. An Effective Way
to Improve Actigraphic Algorithm by Using Tri-axial Accelerometer
in Sleep Detection. In Proc. CSE. 808–811.

[3] AR Cooper, A Page, KR Fox, J Misson, et al. 2000. Physical activity
patterns in normal, overweight and obese individuals using minute-
by-minute accelerometry. European Journal of Clinical Nutrition 54,
12 (2000), 887–894.

[4] Yi Hong, Timothy B Patrick, and Rick Gillis. 2008. Protection of
patient’s privacy and data security in E-health services. In BioMedical
Engineering and Informatics, 2008. BMEI 2008. International Conference
on, Vol. 1. IEEE, 643–647.

[5] Patrick Gage Kelley, Lorrie Faith Cranor, and Norman Sadeh. 2013.
Privacy As Part of the App Decision-making Process. In Proc. CHI.
ACM, 3393–3402.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 523 Page 5



[6] Uwe Maurer, Anthony Rowe, Asim Smailagic, and Daniel P Siewiorek.
2006. eWatch: a wearable sensor and notification platform. In Proc. Int.
Workshop on BSN. IEEE, 4–pp.

[7] R Paradiso, G Loriga, and N Taccini. 2005. A wearable health care
system based on knitted integrated sensors. IEEE Transactions on
Information Technology in Biomedicine 9, 3 (2005), 337–344.

[8] Isabel Pedersen. 2014. Are Wearables Really Ready to
Wear?[Viewpoint]. Technology and Society Magazine, IEEE 33,
2 (2014), 16–18.

[9] Ivan Poupyrev, Nan-Wei Gong, Shiho Fukuhara, Mustafa Emre Karago-
zler, Carsten Schwesig, and Karen E Robinson. 2016. Project Jacquard:
Interactive Digital Textiles at Scale. In Proceedings of the 2016 CHI Con-
ference on Human Factors in Computing Systems (CHI ’16). ACM, New
York, NY, USA, 4216–4227. https://doi.org/10.1145/2858036.2858176

[10] Nishkam Ravi, Nikhil Dandekar, Preetham Mysore, and Michael L
Littman. 2005. Activity recognition from accelerometer data. In AAAI,
Vol. 5. 1541–1546.

[11] Cormac G Ryan, P Margaret Grant, William Wiewatenni Tigbe, and
Malcolm H Granat. 2006. The validity and reliability of a novel activity
monitor as a measure of walking. British journal of sports medicine 40,
9 (2006), 779–784.

[12] Zachary J Schlader, Shona E Simmons, Stephen R Stannard, and Toby
Mündel. 2011. Skin temperature as a thermal controller of exercise
intensity. European journal of applied physiology 111, 8 (2011), 1631–
1639.

[13] Stefan Schneegass and Oliver Amft. 2017. Introduction to Smart Gar-
ments. In Smart Textiles – Fundamentals, Design, and Interaction, Stefan
Schneegass and Oliver Amft (Eds.). Springer HCI Series.

[14] Stefan Schneegass, Thomas Olsson, Sven Mayer, and Kristof Van Laer-
hoven. 2016. Mobile Interactions Augmented by Wearable Computing:
A Design Space and Vision. International Journal of Mobile Human
Computer Interaction (IJMHCI) 8, 4 (2016), 104–114.

[15] Nathaniel Sims, Nhedti Colquitt, Michael Wollowitz, Matt Hickcox,
and Michael Dempsey. 2004. Life sign detection and health state
assessment system. US Patent App. 10/595,672.

[16] Karen P Tang, Jason I Hong, and Daniel P Siewiorek. 2011. Understand-
ing How Visual Representations of Location Feeds Affect End-user
Privacy Concerns. In Proc. UbiComp. ACM, 207–216.

[17] Karen P Tang, Jialiu Lin, Jason I Hong, Daniel P Siewiorek, and Norman
Sadeh. 2010. Rethinking Location Sharing: Exploring the Implications
of Social-driven vs. Purpose-driven Location Sharing. In Proc. UbiComp.
ACM, New York, NY, USA, 85–94.

[18] María Viqueira Villarejo, Begoña García Zapirain, and Amaia Méndez
Zorrilla. 2012. A stress sensor based on Galvanic Skin Response (GSR)
controlled by ZigBee. Sensors 12, 5 (2012), 6075–6101.

[19] Jacob O. Wobbrock, Leah Findlater, Darren Gergle, and James J. Hig-
gins. 2011. The Aligned Rank Transform for Nonparametric Factorial
Analyses Using Only Anova Procedures. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’11). ACM,
NewYork, NY, USA, 143–146. https://doi.org/10.1145/1978942.1978963

[20] Shun-Yuan Yeh, Keng-Hao Chang, Chon-In Wu, Hao-Hua Chu, and
Jane Yung-jen Hsu. 2007. GETA sandals: a footstep location tracking
system. Personal and Ubiquitous Computing 11, 6 (2007), 451–463.

[21] Usman Zulfiqar, Donald A Jurivich, Weihua Gao, and Donald H Singer.
2010. Relation of high heart rate variability to healthy longevity. The
American journal of cardiology 105, 8 (2010), 1181–1185.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 523 Page 6

https://doi.org/10.1145/2858036.2858176
https://doi.org/10.1145/1978942.1978963

	Abstract
	1 Introduction
	2 Representation Levels
	3 Target Audience
	4 Survey on Sharing Behavior
	Value Proposition
	Participants

	5 Results
	6 Discussion
	7 Implications
	8 Conclusion
	References



