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Abstract: Biometric authentication received considerable attention lately. The

vein pattern on the back of the hand is a unique biometric that can be measured

through thermal imaging. Detecting this pattern provides an implicit approach

that can authenticate users while interacting. In this paper, we present the Vein-

Identification system, called VPID. It consists of a vein pattern recognition pipeline

and an authentication part. We implemented six different vein-based authentication

approaches by combining thermal imaging and computer vision algorithms. Through

a study, we show that the approaches achieve a low false-acceptance rate (“FAR”)

and a low false-rejection rate (“FRR”). Our findings show that the best approach

is the Hausdorff distance-difference applied in combination with a Convolutional

Neural Networks (CNN) classification of stacked images.
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1 Introduction

Previous work recognized the limitations of current authentication mechanisms. A

survey of the password habits among American consumers, for example, indicates

that the average consumer takes minimal action to secure their online accounts [12].

Prior work further showed that only few users use a PIN for their mobile device [28]

and passwords are frequently re-used and forgotten [15]. Abdulwahid et al. conclude
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(a) Thermal view from a top-mounted

camera over an interactive table-top

(b) Thermal view from a camera attached

to a laptop screen

Fig. 1: Examples of false-color images which interfere with the skeleton extraction.

that robust authentication mechanisms are needed that operate in a transparent,

continuous, and user-friendly fashion [4]. In search for usable and secure authenti-

cation mechanisms, a large number of approaches have been proposed. A promising

direction is biometric authentication [23]. Biometric authentication identifies a user

using physiological or behavioral characteristics [19, 24, 32, 35]. One of its major

advantages is that there is no need to remember a PIN, a password, or another

secret.

In current systems, biometric authentication mechanisms typically require the

user to perform an explicit action. Fingerprint authentication, for example, requires

to put a finger on a fingerprint sensor and an iris scanner requires looking into

a camera. Another biometric authentication approach is the use of vein patterns

of the palm dorsal. Using vein patterns underneath the human skin has several

advantages. Every person has a unique pattern of veins, which is stable from the

age of ten and unique even for twins [1]. Unlike other biometrics (e.g., fingerprint),

the extraction and duplication of vein patterns needs massive interventions. As a

result of being less fraud-prone, such approaches are supposed to provide a higher

security level for any system.

As veins have a different temperature than the surrounding skin [11], thermal

cameras can capture these patterns from a distance without interfering with the

user’s current task. Figure 1 shows two examples of possible application scenarios

with interactive system. The first example is for tabletop multi-user identification,

as shown in Figure 1a, where users could be authenticated based on their captured

vein patterns from a thermal camera mounted to cover the field of interaction. This

could be applied to permit access and usage in a shared office setup or to customize

settings for smart households. Another example is laptop authentication. Having a

thermal camera that faces a keyboard, as shown in Figure 1b, the system would be

able to track who is using a laptop and can reject access for unknown users or to

specific information. In both cases, user identification and authentication happens

continuously and implicitly and, thus, does not provide an additional burden to
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the user. As soon as a user starts to interact, the system automatically recognizes

the user and grants or denies access to it.

In accordance with Crawford [10] we define “implicit authentication” analo-

gously to a “zero-interaction authentication” [8] that is transparent to the user. This

kind of authentication bears the inherent advantage that a user is not bothered by

the authentication process, which traditionally requires an explicit interaction with

the authentication system (e.g., such explicit interaction additionally interrupts

the interaction with the underlying systems thus negatively impacts usability). Our

presented system eliminates the need for explicit interaction and is subsequently

especially suited for the usage in public or open spaces, with public displays, in

offices or in many other scenarios, where spontaneous interactions can occur.

We present Vein Pattern Identifier (VPID), a system that uses thermal images

for vein pattern authentication. We implemented six different approaches including

standard computer vision algorithms and deep learning methods which we compared

against each other. We conducted a controlled lab study with 12 participants, where

we collected data to evaluate the algorithms. The results show that the Hausdorff

distance [21] as a shape comparison algorithm with skeleton stacking and a CNN

for classification performs best.

The contributions of this paper are as follows:

1. A processing pipeline1 that extracts the vein pattern from thermal images and

identifies users based on it.

2. A study comparing the accuracy provided by six different computer vision

algorithms along with Convolutional Neural Network (CNN).

2 Related Work

We identified two strands of related work to our research: (1) seamless user authen-

tication and identification using biometric information and (2) thermal imaging as

a sensing technology.

2.1 Biometric Authentication

The uniqueness of biometrical features has been widely explored to identify and

authenticate users [9, 23, 32]. Biometrics are classified into behavioral and physio-

logical biometrics [41]. Behavioral biometrics rely on behavioral cues to authenticate

1 The software can be found at http://research.hcigroup.de.

http://research.hcigroup.de
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users, for instance, their touch and keystroke behavior [13, 16, 33]. Physiological

biometrics are based on “something you are” and include a person’s physiological

information such as iris, face, voice, fingerprint, and hand geometry [37]. An exam-

ple is Bodyprint [19] that uses body parts like ear, finger, fist, and palm prints,

obtained via a mobile phone touchscreen as a biometric trait.

Veins patterns are another biometric feature that has been proposed for

identification and authentication. Since vein patterns are unique for each users

and stable for a lifetime [1], they are well suited as a biometric. For example,

veins can be captured under IR-lights [5], using VGA [39], or near IR imaging [17].

While these technologies provide good input, they either require external sources

of illumination [38], have high costs, or require multiple sensors [14].

Researchers also explored using thermal (far IR) imagining to extract the veins

on the palm [27, 40]. As veins have different temperature than the surrounding

skin [11], they are visible to thermal cameras without additional illumination. Vein

triangulation and knuckle shapes are used to differentiate between users. From

this we learn that veins are a powerful means for authentication. At the same

time, approaches are required that allow authentication using vein patterns to be

seamlessly integrated with interactive systems.

2.2 Thermal Imaging for Sensing Interaction

Due to the advantages that thermal imaging provides, including robustness to

illumination and color changes, it has recently been proposed as a sensing technology

for interactive systems [3, 29, 34]. This is achieved by integrating thermal imaging

and existing computer vision techniques to improve touch or gestural interaction.

The advantages of thermal imaging are utilized to overcome common RGB and

depth cameras’ limitations, such as light dependence and lack of visible differences

between veins and skin. Larson et al. used heat traces caused by fingers touching a

surface and detected pressure for interaction on surfaces [29]. Sahami Shirazi et

al. proposed thermal reflection to expand the interaction space beyond the camera’s

direct field-of-view [34]. Abdelrahman et al. investigated the material properties

supporting both touch and mid-air gestural interaction using thermal imaging as

sensing technology [3]. Furthermore, Woo Cho et al. [7] introduced a new system

to detect the thermal handprint for forensic identification.

Thermal imagers have been used in security contexts before. Abdelrahman et

al. presented an approach to reveal PIN and lock patterns from thermal images of a

user’s mobile device [2]. Overall, thermal cameras are promising sensors for a range

of interactive systems e.g., multiple user interaction, tabletop interactions [34] that

would naturally benefit from seamless identification and authentication.



VPID: Towards Vein Pattern Identification Using Thermal Imaging 5

3 Vein Identification Approaches

In the following, we present the VPID system that uses thermal imaging to identify

users. VPID consists of a recognition pipeline and an authentication part. The

recognition pipeline consists of nine steps starting with the raw camera data and

resulting in the user’s vein pattern that can be fed into the authentication system.

For the authentication part, we propose six different vein-based authentication

algorithms.

3.1 Vein Pattern Construction Pipeline

For extracting the hand veins, we are using the OpenCV library2 for image

processing and features extraction. We apply in total nine steps to a thermal image

stream to construct the vein pattern of each user that we later use to authenticate

a user.

1. Image extraction: First, we extract frames of raw data from the live-stream

of the thermal camera (cf., Figure 2a).

2. False-color image transformation: We transform the acquired raw ther-

mal data, represented by an array of unsigned short integers, into a false-color

image using an iron color palette scaled from 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 7 and

𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 1. This palette boosts the color difference of temper-

atures across the shading palette without enhancing or omitting any potential

temperature [18] (cf., Figure 2b). This insures that all small details are captured.

Afterwards, we apply a color-based threshold to remove any background noise from

the hand by setting it to black (cf., Figure 2c).

3. Hand-detection: Then, we use the data from step 2 to detect the warmest

area in the image. A convex hull is then drawn to connect all the local maxima of

the warm points. Next, we detect the hand informalities (i.e., fingers and knuckles)

to verify a hand shape. We measure the defects, which are the points with the

largest distance from the convex set (cf., Figure 2d). If no defects are detected, the

shape is not identified as a hand.

4. Region of interest (ROI): As the vein pattern is located on the back of

the hand, we define the ROI as the circle with the largest diameter enclosed in the

hand’s contour (cf., Figure 2e). For that, we try all possible combinations of circles

across the hand area (i.e., warmest area). To reduce random noise and artifacts at

2 OpenCV: http://opencv.org/
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(a) Raw data received from the

thermal camera in the form of

unsigned short integers

(b) The raw thermal data is then

processed into a false color image.

The colorbar maps the values of

Celsius degrees into iron palette

colors.

(c) A color-based thresholding

removes the background of the

hand by setting it to black.

(d) A convex hull is placed in green

color around the hand. The blue

smaller circles form up to five de-

fects in the hull. Also, the hand is

separated by a blue contour from

the black background.

(e) The largest circle, depicted in

white color, is found within the

area of the hand. Its size is reduced

by a factor of 0.95.

(f) The extraction of the region of

interest that would be further used

for processing

Fig. 2: The first half of the steps in our pipeline that would result in the region of interest
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(a) An adaptive threshold is used

to process the region of interest

(b) Noise filtering using morpholog-

ical operations (i.e., open) followed

by a median filter.

(c) Using the “thinning” function,

the size of each white area is re-

duced till it is exactly one pixel

thin.

(d) Using the defects (i.e., blue

circles) along with the center of

the ROI a vector is plotted. This

vector is then rotated to overlap

the postive y-axis.

(e) The skeleton after rotation. Fur-

thermore the skeleton is zoomed un-

til it fits the height of the 382×288

pixels resolution.

(f) Finally, all information are

merged into a debug image, which

shows the skeleton on the original

image.

Fig. 3: Starting with the region of interest, the second half of the image processing pipeline

is presented. Specially, the area from the region of interest is processed into a skeleton.
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the border of the circle, the diameter is hence multiplied with a constant factor of

0.95 and we extract that mask (cf., Figure 2f).

5. Extraction of the vein pattern skeleton: We transfer the circular mask

depicting the ROI to grayscale image with a normalized histogram. Then, we use

an adaptive-threshold based approach to detect the local maxima and assigning

them to be part of the vein skeleton (cf., Figure 3a).

6. Noise removal: Afterwards, we use median blurs followed by an opening

morphological operation to eliminate noise and small, single artifacts from the

image (cf., Figure 3b).

7. Topological skeleton: The image obtained from step 6 results in thick

lines or broad areas (i.e., one or multiple connected lines with a width of more

than one pixel). Hence, we used the thinning approach of Zhang Suen [42], which

reduces the size of each area until it is exactly one pixel thin (cf., Figure 3c).

8. Skeleton affine transformations: Using the center of the ROI obtained

in step 4, we obtain the center point of the defects in step 3 and plot a vector.

This vector is used to rotate any captured image upwards, in the direction of a

positive y-axis (cf., Figure 3d). To further unify the metrics of the logged data, we

scale the ROI so that the diameter reaches the maximum height of the image (cf.,

Figure 3e).

9. Skeletons stacking: In this final step, the vein skeletons obtained from

several images of the same video sequence (i.e., same hand) are stacked over each

other to assure the best quality to the finest detail. We refined the first 14 frames

of each video and stacked them as a final step.

3.2 Vein Pattern Authentication

The authentication process is done through comparing the similarities between vein

pattern skeletons. We implemented six different approaches for shape comparison,

namely, Hausdorff distance, Shape Context, Jaccard distance, and three different

versions of Hu moments. In addition, we refine our results by machine learning

algorithms.

Hausdorff and Shape Context distances based on the work of Huttenlocher,

Klanderman and Rucklidge [21], and Belongie et al. [6], respectively. These two

approaches depend mainly on comparing the distance-difference between two

skeletons. Hence, a user is authenticated if the comparison of two skeletons, 𝑆1

and 𝑆2 results in 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑆1, 𝑆2) ≤ 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.

Jaccard distance. The Jaccard index [22] defines a metric for similarity

between two sets (e.g., A and B). Where A consists of all white pixels of the first
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skeleton, and B consists of all white pixels of the second skeleton. Each pixel is

defined as a tuple of its X- and Y-coordinates. The Jaccard index is then defined

as: 𝐽(𝐴,𝐵) =
|𝐴∩𝐵|
|𝐴∪𝐵| , where 0 ≤ 𝐽(𝐴,𝐵) ≤ 1. In other words, the size of the

overlapping area between two images is divided by the area of the union of both

images, where the area is defined by the presence of the white pixels in the binary

image. To provide a comparable metric the Jaccard distance is used. It is defined

as: 𝐽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴,𝐵) = 1− 𝐽(𝐴,𝐵).

Hu moments based on the work of Hu [20]. These are numerical values

retrieved from image characteristics (e.g., lie on the same plane, has non-zero

values, etc.). These numerical values then can be compared to each other. Hu

proposed three different ways, namely:

1. 𝐼1(𝐴,𝐵) =
∑︀

𝑖=1...7 |
1

𝑚𝐴
𝑖

− 1
𝑚𝐵

𝑖

|

2. 𝐼2(𝐴,𝐵) =
∑︀

𝑖=1...7 |𝑚
𝐴
𝑖 −𝑚𝐵

𝑖 |
3. 𝐼3(𝐴,𝐵) = 𝑚𝑎𝑥𝑖=1...7

|𝑚𝐴
𝑖 −𝑚𝐵

𝑖 |
|𝑚𝐴

𝑖 |

where 𝑚𝐴
𝑖 = 𝑠𝑖𝑔𝑛(ℎ𝐴𝑖 ) · 𝑙𝑜𝑔(ℎ𝐴𝑖 ) and 𝑚𝐵

𝑖 = 𝑠𝑖𝑔𝑛(ℎ𝐵𝑖 ) · 𝑙𝑜𝑔(ℎ𝐵𝑖 ) are the Hu moments

ℎ𝐴𝑖 , ℎ𝐵𝑖 of 𝐴 and 𝐵 respectively.

Convolutional Neural Network . Recent work using deep learning has shown

that Convolutional Neural Network (CNN) can be used to classify images [25, 30].

A trained CNN can match one new, unknown image onto one of many learned

classes of images. When used as standalone mechanism, the input data would

always be identified and classified to any of the registered classes. Therefore, we

deployed the CNN with the other comparison and matching algorithms. In our

case, this can be used to train the system with the skeleton images of the user’s

vein pattern. For our work, we tested various CNNs (i.e., LeNet [31], AlexNet [26],

and VGG-16 [36]) with sample data collected across several pilot studies. Finally,

we decided to use ”AlexNet” for our evaluation, as it does not require long training

time and has high accuracy. The network was trained for 30 epochs, with a constant

random seed, stochastic gradient descent as the solver and a base learning rate of

0.001.

4 Data Collection

For testing the approaches, we used an Optris PI4503 contactless thermal camera.

It has a 62°× 48° field-of-view, 382 px × 288 px optical resolution, and temperature

3 http://www.optris.com/thermal-imager-pi400
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sensitivity of 40mK. The camera was mounted on a tripod at a fixed height of

37 𝑐𝑚, facing towards a table to capture the participant’s hand as depicted in

Figure 4. The room temperature conditions were kept constant for all sessions.

For capturing thermal images, we have solely used the “iron” colouring palette

scheme, as it provides an infliction point in its gradient over the relative colour

intensity. This infliction point helps in separating the “warm” colour values per pixel

from the “cold” colour values. To set the exposure parameters (i.e., maximal and

minimal temperature to scale the colouring palette scheme) for the thermal imager,

we have automatically determined the warmest point of temperature within the

image, and added a constant offset of +1 °C for the maximum observed temperature

and -5 °C for the minimum temperature. Our tests showed that this offset is ideal

to capture the participant’s hand as a whole with all of its contents.

4.1 Participants and Procedures

We recruited 12 participants (4 female, 8 male, 𝜇 = 28, 𝜎 = 8.5) via university

mailing lists. The participants have backgrounds in different majors. After welcom-

ing the participants, we described the goal of the study and handed out consent

forms as well as demographic questionnaires. We asked the participant before

recording to wash his/her hands under normal tab water. This procedure was done

at the beginning to unify the temperature of participant’s hands. The study was

conducted over two sessions on the same day, separated by 2− 3𝑚𝑖𝑛𝑠 break. In

every session, each hand (i.e., left or right) was recorded for 20 𝑠𝑒𝑐𝑠. We defined

the area and direction in which the hand should be placed on and pointing to, so

the camera could start recording.

Collecting biometric information from participants raised the need for a secure

procedure, in order to protect their privacy. As the always existing, possible risk

of a data breach leaves participants with no way of changing or revoking their

biometric information, a failure to comply with a secure procedure to protect their

data is highly unethical. Subsequently, we gathered the informed consent of all our

participants and assigned them an anonymous identifier. Directly upon finishing

the acquisition of data per participant, we deleted the connecting attribute of their

private information to the anonymous identifier, so that no connection can be

re-established in the future.
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Fig. 4: The setup of the controlled study, which was used for data collection. The camera

was mounted on a height of 37𝑐𝑚.

4.2 Evaluation

To start with the evaluation process, we had to first categorise the received images.

One major aspect that directly influences the obtained results is the quality of

the images captured by the thermal camera. In general, we noticed that certain

circumstances exist that result in a “good” hand thermal-image recording, which

contain a very visible vein pattern. In contrast to other circumstances, a “bad”

thermal recording with the vein pattern being only barely visible. The quality of

a captured image is defined by the visibility of the vein pattern in the thermal

image, which can be measured by its contrast towards the surrounding area of

tissue. One main contributing factor is the angle of the hand towards the thermal

imager. If the hand is twisted or curled while being captured by the thermal imager,

the vein pattern might not be visible at all. One of the core assumptions of our

vein-detection algorithm is that the vein pattern would be in general warmer (i.e.,

brighter) than the surrounding area. Hence, a quantifying quality metric had to

be set to categorize any input. For that we used the manual Thermal Imagining

Quality Rating (TIQR) algorithm, where we defined six main criteria. These are

based on observations from several pilot studies, where we captured one or two

hands and extracted the skeletons. Then we matched visually what we obtained

compared to the original input. Each criterion is assigned a numerical value. Thus,
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Nr. Condition title Condition description Fig. Rating

1 High contrast The user’s vein pattern is clearly visible and

distinguishable from the surrounding area.

5a 1

2 Medium contrast The user’s vein pattern is barely visible. This

condition can apply in conjunction with con-

dition Nr. 1.

5b 1

3 Fingers visible The user’s fingers are clearly visible in the

image and not cropped off or dark.

5e 1

4 Complete contour The shape of the hand within the false-color

image resembles the true form of a regular

hand. No parts are cropped off. The hand is

not twisted in any way.

5c 1

5 Dark vein pattern The vein pattern appears dark instead of

bright in the false-colour image.

5f -4

6 Wrong ROI Another warm object in the field of view of

the thermal imager was falsely identified as

a hand, thus the region of interest is not the

user’s back of the hand.

5d -4

Tab. 1: The observed criteria that can characterize the content of a false-colour thermal

image. The Thermal Image Quality Rating, (“TIQR”) is the sum of its conditions, but at

least zero.

the TIQR value would be the summation of all the existing criteria ratings. Also,

if the final TIQR value was found to be negative, it would be rounded up to 0.

By doing that, we ended up with four main categories of images, where only

the categories having a TIQR of “3” or “4” is furthermore processed for vein

pattern detection. All the data, that was marked for processing was subsequently

classified into one of three groups. The first group is the “registered” data set. The

data in this set was provided to the system and used to train an “AlexNet”. It

consists of, in total, twelve distinct skeletons, where each skeleton originates from

a different person’s hand. The second group is the “testing” data set. It consists of

six elements, where each one has a counterpart in the “registered” data set. These

are the skeletons extracted from the second recording session of the same registered

hand. The third group is formed only of the skeletons of not-registered hands and

is used also for testing, referred to as the “unknown-testing” data set.

For the evaluation, the “testing”- and “unknown-testing”-skeletons are tested

against the authentication system. Dependent on the input and the system’s output,

the true positive rate (“TPR”), true negative rate (“TNR”), false positive rate



VPID: Towards Vein Pattern Identification Using Thermal Imaging 13

(a) An example of a vein pattern with

high contrast.

(b) An example of a vein pattern with

medium contrast.

(c) An example of a slightly twisted

hand. The contour is merged with a

public display in the background.

(d) An example, where the vein pattern

was detected in the wrong area within

the captured image. Thus the region of

interest is misplaced.

(e) An example of a constant temper-

ature hand, where no vein pattern ap-

pears.

(f) The thermal condition is so im-

balanced, that not even a dark vein

pattern is visible, as the fingers are

missing.

Fig. 5: Examples of the six image-quality rating criteria mentioned in Table 1.
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(“FPR”) and false negative rate (“FNR”) are determined. Ideally, all skeletons

in the “unknown-testing” data set should be rejected by the system and become

a true negative (“TN”), as they have no counterpart in the systems’ “registered”

data set. A false negative (“FN”) is met, when an element of the “testing” data

set is incorrectly rejected, since each element should have been accepted instead. A

true positive (“TP”) is counted, if an element of the “testing” data set is correctly

accepted by the system. Last but not least, a false positive (“FP”) is met, when

an element of the “unknown-testing” data set is accepted by the system. As this

data set does not have any counterparts in the “registered” data set, all of them

should be rejected instead.

Figure 6 depicts the three evaluated variants of how the authentication system

can be designed. The first variant (i.e., Variant I ), depicted in Figure 6a, only uses

a shape comparison algorithm as a measure of similarity between an input skeleton

and any of its registered skeletons. The user’s identity is assumed as the registered

skeleton with the closest distance to the input. If the measure of similarity, the

“distance”, is below the threshold T1, the authentication attempt is successful,

otherwise it is rejected.

The second variant (i.e., Variant II ), which is illustrated in Figure 6b, ad-

ditionally performs an image classification to detect the user’s identity. For the

classification, the pre-trained AlexNet is utilized, which states a top prediction and

an associated certainty. If this certainty is below T2, the user is rejected. Otherwise,

the user’s identity is assumed to be the prediction of the neural network. The

threshold T2 is set to a constant value of 75%.

The third variant (i.e., Variant III ), switches the process and exchanges the

activities of image classification and shape comparison and is depicted in Figure 6c.

Here, the neural network filters the registered data for a set of potential matches.

Then, the shape comparison is applied to compare the input against the best

matching image of this set only.

As a measure of comparison between the different approaches to utilize the

system, we chose the accuracy (“ACC”, see Equation 1a). To find the best suitable

values for the threshold T1, we used an optimizer, which calculates the accuracy

for every present shape comparison value. The threshold value, which lead to the

highest accuracy per method, was then set as the constant value of T1.

ACC =
TP + TN

P + N
(1a)
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A. Perform shape comparison

C. Rejection

B. Authentication

[ Distance >= Threshold T1 ]

[ else ]

(a) Variant I.

A. Perform shape comparison D. Perform image classification

C. Rejection

D. Perform image classification B. Authentication

[ Distance >= Threshold T1 ]

[ else ]

[ Certainty < Threshold T2 ]

[ else ]

(b) Variant II.

A. Perform image classification D. Perform shape comparison

C. Rejection

D. Perform shape comparison B. Authentication

[ Certainty < Threshold T1 ]

[ else ]

(c) Variant III.

Fig. 6: An activity chart depicting all three variants of the authentication system.

4.3 Results

All three variants, in which the system can be deployed, are depicted in Figure 7,

when skeleton stacking is not applied. The bar chart reports the accuracy per shape

comparison algorithm. In contrast, Figure 8 depicts the variants, when skeleton

stacking is applied.

Skeleton stacking improved the performance, when the Hausdorff distance

was used as a shape comparison algorithm. Here, combining skeleton stacking

and Variant III. leads to an accuracy of 100%, i.e. the system did not make any

errors, when the threshold T1 is set to a value between 9.48 to 10.63. In any other

case, skeleton stacking did not improve the accuracy. When no skeleton stacking is

applied, the shape comparison methods “Shape Context” and “Jaccard” worked

best, yielding the highest accuracies in direct comparison to the Hu-methods and

the Hausdorff distance. The Variant III, with the application of skeleton stacking

and the Hausdorff distance as a shape comparison algorithm, was able to outperform

any other combination, by reaching an equal error rate (“EER”) of zero. Out of the

six skeletons in the “testing” data set, all were accepted, while all six skeletons in

the “unknown-testing” data set were correctly rejected. When applying the same

threshold boundaries of 9.48 to 10.63 to Variant I and II, utilizing skeleton stacking

and the Hausdorff method, both reported between four and six false positives and

no false negatives.
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Fig. 7: Depiction of the maximum accuracy per variant, when skeleton stacking is not

applied.
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Fig. 8: Depiction of the maximum accuracy per variant, when skeleton stacking is applied.

Variant II, which utilizes the CNN besides the shape comparison algorithms,

increased the accuracy in any case, except for the Jaccard-distance shape comparison

algorithm without the application of skeleton stacking. A single false positive made

the difference between Variant II and Variant III, when the Hausdorff distance was

applied without the stacking of skeletons.

As a consequence, the combination of CNNs with the traditional shape com-

parison algorithms is beneficial. They work in general best, if the shape comparison

algorithm first performs a rejection (Variant II), but can exceed their performance,

if this process is switched (Variant III). In any case, shape comparison algorithms

are useful to tweak the performance of deep learning methods. CNNs also states a

certainty value besides its predictions, which can be utilized as a rejection criterion

similarly to the shape comparisons. From our data, we saw, that for a learned
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Fig. 9: The FAR/FNR-chart for the authentication system using using Variant III, skeleton

stacking and the Hausdorff distance as a shape comparison algorithm.

skeleton as an input, the certainty very often was above 90% and many times close

to 100%. In contrast, unknown data, often ranged in a certainty interval of 40% to

50%. The feasibility of certainty values needs to be investigated in future research.

5 Limitations and Future Work

An important factor influencing the accuracy of the VPID system is the image

quality. If the image is blurry, the system is unable to extract the vein pattern.

Given that the VPID system is designed to implicitly and continuously identify and

authenticate users, it can discard images that do not provide proper vein patterns.

This, however, requires automatic detection of such images. While we manually

rated the images, future work needs to investigate how this can be automated.

External influences such as the room temperature or physical activity influence

the clarity of the vein pattern. In cases in which the vein pattern is not fully visible,

authentication becomes challenging. Understanding the influence of the context on

the clarity of the vein pattern is an important aspect that can make vein-based

authentication feasible. Using a machine learning model that takes these differences

into account might further improve authentication accuracy.

During the controlled study, we have tested the system with only one thermal

imager, which limited the position and orientation the participant’s hand could

have in the recorded frame. In order to allow a greater degree of freedom for the

participant’s hand, the system could be used with multiple thermal imagers, that

cover more angles. An implementation and evaluation of an authentication system

with more than one thermal imager needs to be performed in future work.
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6 Conclusion

Relying on biometric features as replacement of passwords and tokens enhances the

convenience of authentication. Users usually interact with devices like laptops and

interactive tabletops without occluding the back of their hand. Thus, deploying a

thermal camera, which currently becomes affordable and small, to capture their

veins pattern allows user identification and authentication in a contactless and

continuous manner.

Such implicit identification and authentication provides advantages, particularly

from a usable security point of view. This is due to the fact that the additional

identification or authentication step is not loaded onto the user and, thus, the user

can interact with the system without such intermediate step.

To achieve this, we presented the VPID system consisting of a recognition

pipeline and an authentication mechanism. We conducted a user study with 12

participants to evaluate the pipeline and different strategies for authentication.

The results of the conducted study, highlight the potential of using veins patterns.

We show that it is possible to distinguish users using their vein pattern. For that

we used six different algorithms. Our results shows that the best used algorithm

was the Hausdorff distance after applying CNN of stacked images.
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